LITHIFIED AND UNLITHIFIED Mg-CALCITE PRECIPITATES IN TROPICAL REEF ENVIRONMENTS

IAN G. MACINTYRE1 AND RICHARD B. ARONSON2,3

1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 U.S.A.
2Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, Alabama 36528 U.S.A.
3Department of Marine Sciences, University of South Alabama, Mobile, Alabama 36688 U.S.A.
e-mail: macintyre@si.edu

ABSTRACT: Push cores from the branching-coral framework of lagoonal reefs in Belize and Panama indicate that the micritic Mg-calcite in the un lithified mud matrix is similar in composition to the well documented submarine lithified micritics and infillings found in open reef framework. The sediment matrix of the lagoonal framework contains significant concentrations of 12 to 13 mole % MgCO3 calcite that shows almost no signs of skeletal origins, as indicated by a fairly consistent mineralogy and independent distribution patterns in sand-, silt-, and clay-size fractions. Its sedimentological and mineralogical similarity to cemented micritic crusts and infillings suggests that the precipitation of micritic Mg-calcite is widespread in tropical-reef waters and becomes lithified when precipitated in open frameworks but remains unlithified when trapped in impermeable lagoonal muddy sediments.

INTRODUCTION

Until the 1960s, Mg-calcite lithification in coral-reef frameworks was a little-recognized phenomenon. Following the discovery of extensive submarine lithification in modern coral-reef environments, mainly by micritic Mg-calcite (Macintyre 1967; Ginsburg et al. 1967; Macintyre et al. 1968), the Bermuda conference on “carbonate cements” focused attention on submarine lithification (Bricker et al. 1969), and this topic promptly became the subject of increasing research. Ensuing studies documented the widespread occurrence of submarine cementation in coral reefs, in locations such as Jamaica (Land and Goreau 1970; Land and Moore 1980), Bermuda (Ginsburg et al. 1971a; Ginsburg et al. 1971b; Shinn 1971; Ginsburg and Schroeder 1973; Schroeder 1972a, 1972b; Schroeder and Zankl 1974; Focke and Gebelein 1978), the Red Sea (Friedman et al. 1974; Gvirtzman and Friedman 1977; Brachert and Dullo 1991), Belize (James et al. 1976; Shinn et al. 1982; Macintyre 1984), Panama (Macintyre and Glynn 1976; Macintyre 1977, 1983), Australia’s Great Barrier Reef (Marshall and Davies 1981; Marshall 1983, 1986), Antigua (Macintyre et al. 1985), Florida (Lighty 1985), and Tahiti (Montaggioni and Camoin 1993).

For the most part, these occurrences of submarine lithification by Mg-calcite were found in the fore reef, in areas of high wave energy and slow reef accumulation. In Belize, for example, the phenomenon was observed only on the seaward margins of the barrier and atoll reefs and not in lagoons with low wave energy (James et al. 1976). Similarly, the exposed outer reefs of the Great Barrier Reef of Australia were found to contain considerably more submarine lithified deposits than the innermost protected reefs (Marshall 1986). Mg-calcite crusts and infilled rims of corals were also reported to be a common feature in high-wave-energy reef facies in a fringing reef off the Caribbean coast of Panama, where a very dense Mg-calcite matrix had formed in the more slowly accumulating pavement facies (Macintyre 1977). Some of the most spectacular Mg-calcite lithified deposits occur in Bermuda cup reefs located in areas of high wave energy (Ginsburg et al. 1971a; Ginsburg and Schroeder 1973; Shinn 1971). By contrast, there has been only one report of extensive lithified deposits forming in quiet water: on projections formed by serpulid worms on the ceiling of a cave in the back-reef lagoon of Belize (Macintyre 1984).

Interestingly, lithified Mg-calcite deposits at the bases of skeletal cavities or on the upper surfaces of corals commonly form geopetal textures. Pavement limestones lack this geopetal characteristic (Macintyre and Marshall 1988) because they are formed when a hiatus in reef accumulation allows a section of the reef to be multicyclically bored and infilled with micritic Mg-calcite. This can result in most of the skeletal structure being replaced by the Mg-calcite.

Many Mg-calcite lithified deposits have a marked peloidal appearance, with “repeated nucleation around centers of growth” (Macintyre 1985, p. 115). Peloidal precipitates in skeletal cavities also tend to have geopetal textures. These peloids exhibit different stages of precipitation, with an inner core of anhedral micrite surrounded by an outer rim of euhedral crystals (Macintyre et al. 1968; Shinn 1969; Land and Goreau 1970; Alexandersson 1972; Macintyre 1977).

These geopetal characteristics and dominantly micritic texture have given rise to some confusion over the terminology applied to Mg-calcite lithified precipitates. A central question is whether such deposits should be called cements or matrices. Clearly, most of these precipitates nucleate in reef-framework cavities and settle to eventually become lithified deposits, in somewhat the same way that snow settling on the ground hardens into sheets of ice. To help clarify the issue, Reid et al. (1990) suggested that all micritic precipitates in subsurface cavities, both rim attachments and matrix infillings, be referred to as “internal micrite precipitates” (p. 164).

Owing to the lack of submarine lithification in low-wave-energy environments, many researchers have assumed that Mg-calcite is not precipitated in such settings and hence have focused primarily on Mg-calcite deposits cementing outer reef frameworks. Our study of lagoonal...
reefs in Belize and Panama suggests otherwise. When we examined several of the numerous cores documenting the history of the branching framework of these reefs over the past 3,000 to 4,000 years (Aronson et al. 1998; Aronson et al. 2002; Aronson et al. 2004) we discovered that micritic Mg-calcite is precipitating in lagoonal tropical-reef environments. The difference is that in lagoonal environments, it remains an unlithified mud.

METHODS

Push-core tubes measuring 4 to 5 m in length and 7.6 cm in diameter were used to collect cores from the lagoonal rhomboid shoals of the Belizean Barrier Reef and the fringing reefs of Almirante Bay, a coastal lagoon in northwestern Panama (Fig. 1). Core tubes were made of aluminum with teeth cut into the leading edge. With the aid of adjustable handles, we first pushed the tubes into the branching framework (dominantly Acropora cervicornis in Belize and branching Porites in Panama) (Fig. 2) and then used a sliding hammer weight over the top of the tube to penetrate the substrate further. After the tubes were driven into the sea floor 3 to 4 m, we took measurements and tightly capped the top of the tube. Upon recovering the full core tube, we also capped the base. Field measurements indicated that little or no core material was lost during extraction (see Dardeau et al. 2000).

After extruding the cores in the laboratory, we collected sediment-matrix samples from several cores. Continuous sediment samples were
collected at 5- or 10-cm intervals in four of the cores from Panama and
one from Belize. In addition, samples were collected from similar depths
in five cores from Belize. The mud-size fraction of these sediment samples
was obtained by washing them through a 63-μm sieve. The carbonate
mineralogy was carried out by standard X-ray diffraction techniques
(Goldsmith and Graf 1958; Milliman 1974) using a Scintag X-ray
diffraclometer with Cu Kα radiation, a Peltier detector, and zero-
background mounting plates. The percentage of aragonite and Mg-calcite
in each mud sample was determined by peak-area analyses in reference to
a standard curve for aragonite concentrations (Boardman 1976). The
amount of carbonate present in each sample was determined by weight
loss after treatment with 10% hydrochloric acid.

Five representative sediment-matrix samples from increasing depths in
a core from Belize and one from Panama were separated into clay-size (<
4 μm) and silt-size (4–63 μm) fractions by settling and decantation (Folk
1961). Small samples of each size fraction were mounted and gold-plated
on aluminum stubs and examined with a Leica 440 scanning electron
microscope. The carbonate mineralogy of the remaining silt- and clay-size
fractions, along with the sand-size fractions, was analyzed by X-ray
diffraction. Thin sections were prepared from the sand samples in these
two cores and their composition were determined with 200 point counts at
spacing intervals of 2 mm along transects. In addition, EDS (Energy
Dispersive Spectrometer) spectra were acquired from a clay-size sample
using a JEOL JSM-840A scanning electron microscope.

In this study we are investigating the major origin of the Mg-calcite in
the mud matrix that occurs in mostly branching coral framework in the
lagoons of Belize and Panama. This soft muddy matrix varies in
composition from sandy mud to muddy sand. No distinct horizons of
clean sand or silt were encountered.

We use the term “precipitate” to describe physicochemical pre-
cipitation of micrite (1–4 μm) and minimicrite (<1 μm) carbonate in
the water column above the substrate or in the upper surface of the
substrate.

RESULTS

The mineralogic composition of the lagoon muds in cores from Belize
and Almirante Bay, Panama, is strikingly consistent, as illustrated by two
representative cores (Fig. 3). Most notably, the average percent carbonate

![Diagram](image_url)

Fig. 3.—Graphic illustration of the carbonate mineralogy of mud fractions collected in cores from Belize (central shelf lagoon) and Panama (Almirante Bay).

Table 1.—Mineralogical analyses of carbonate in Belize lagoonal mud samples from various depths in five cores.

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth in Core (m)</th>
<th>% Carbonate in mud</th>
<th>% Mg-calcite in mud</th>
<th>Mole % MgCO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakers Rendevous BZ99-8</td>
<td>1.3</td>
<td>84.3</td>
<td>24</td>
<td>12.3</td>
</tr>
<tr>
<td>Pelican Patch Reef BZ97-15</td>
<td>0.9</td>
<td>91.9</td>
<td>27</td>
<td>12.5</td>
</tr>
<tr>
<td>Cat Cay BZ97-3</td>
<td>1.05</td>
<td>94.5</td>
<td>28</td>
<td>12.6</td>
</tr>
<tr>
<td>The Fish BZ99-25</td>
<td>1.7</td>
<td>94.6</td>
<td>28</td>
<td>12.1</td>
</tr>
<tr>
<td>The Fish BZ99-27</td>
<td>0.9</td>
<td>93.7</td>
<td>22</td>
<td>12.3</td>
</tr>
<tr>
<td>Average and Standard Deviation</td>
<td>91.8 ± 4.3</td>
<td>25.8 ± 2.7</td>
<td>12.4 ± 0.2</td>
<td></td>
</tr>
</tbody>
</table>
(Belize 94.1 ± 2.4 SD; Panama 87.5 ± 5.8 SD), % Mg-calcite (Belize 28.8 ± 2.7 SD; Panama 32.6 ± 8.3 SD), and mole % MgCO$_3$ in the calcite (Belize 12.4 ± 0.3 SD; Panama 12.4 ± 0.4 SD) show no significant difference. There is only minor variation with increasing depth, as is evident in the minor standard deviations obtained in each analysis.

Analyses of individual samples from five cores from Belize further demonstrate the compositional consistency of these lagoonal muds (Table 1). The average percent carbonate (91.8 ± 4.3 SD) is only slightly less than that of Belize core BZ02-7 from Douglas Cay. The % carbonates (Table 1). The average percent carbonate (91.8 ± 4.3 SD) is only slightly less than that of Belize core BZ02-7 from Douglas Cay. The % carbonates (Table 1). The average percent carbonate (91.8 ± 4.3 SD) is only slightly less than that of Belize core BZ02-7 from Douglas Cay. The % carbonates

As can be seen in Figure 7, the Mg-calcite grains are anhedral and are from Panama (P00-1, 125–130 cm) containing 54% Mg-calcite (Table 3). EDS spectra were obtained from grains on a SEM image of a sample Aragonite

EDS spectra were obtained from grains on a SEM image of a sample Aragonite

To investigate the source of the Mg-calcite in these muds more closely, we separated five samples from core BZ02-5 off Cat Cay, Belize, and five samples from similar depths in core P00-1 from Almirante Bay, Panama, into sand-, silt-, and clay-size fractions. This enabled us to see the carbonate mineralogy relationships in each size fraction. In general, we found Mg-calcite values for the Belize core (Table 3) to be uniform in each size fraction from the various depths: the average was 13.8% for the silt-size fraction and 9.4% for the sand-size fraction, and jumped to 38.2% in the clay-size fraction (with a maximum of 54%). Similarly, the Panama core (Table 4) showed fairly consistent values in each size fraction from the various depths, again with a marked increase in the clay-size fraction, which averaged 50.2% (reaching a maximum of 58%), while average values were 16.0% for silt and 12.6% for sand.

All silt-size fractions of Belize and Panama samples also appeared fairly similar under the scanning electron microscope. They consisted primarily of microbored coral fragments, clionid sponge chips, and a variety of spicules (Fig. 4). Some differences were apparent in clay-size fractions, however: the Belize photomicrographs contained an abundance of broken and eroded needles (Fig. 5A) whereas those from Panama (Fig. 5B) indicated an abundance of anhedral mciartic (< 1 μm). In both cases, the larger platy grains are probably noncarbonate clays.

To check whether Mg-calcite in the mud fractions could have had a skeletal source, we conducted a point-count analysis of thin sections of the sand fractions from the previous samples collected from representative depths in cores from both Belize and Panama (Table 5). Here we found constituent grains well preserved (Fig. 6A, B) with little or no evidence of the micritization characteristic of sand grains in the northern Belize lagoon (Reid et al. 1992). Apparently, sediment in our study areas is rapidly trapped in the branching coral frameworks, with the result that exposure time on the sea floor is too short for alteration to occur. As can be seen in Table 5, corals are the dominant constituent grains in both study areas (they average 62% in Belize and 78% in Panama), with much smaller amounts of echinoids, molluscs, foraminifera, crustose coralline algae, and worm-tube grains. Constituent sand grains of the two areas differed primarily in the abundance of Halimeda grains (Fig. 6A), which averaged 23% in Belize and appeared only in trace amounts in the Panama samples (Fig. 6B).

In an effort to identify the Mg-calcite grains in the clay-size fraction, EDS spectra were obtained from grains on a SEM image of a sample from Panama (P00-1, 125–130 cm) containing 54% Mg-calcite (Table 3). As can be seen in Figure 7, the Mg-calcite grains are anhedral and are

Table 3.—Mineralogical analyses of the carbonate in the clay-, silt-, and sand-size fractions in samples from core BZ02-07, central shelf lagoon, Belize.

<table>
<thead>
<tr>
<th>Depth interval in core (cm)</th>
<th>% Clay in mud</th>
<th>% Silt in mud</th>
<th>% Mg calcite</th>
<th>Mole % MgCO$_3$</th>
<th>% Aragonite</th>
<th>% Mg calcite</th>
<th>Mole % MgCO$_3$</th>
<th>% Aragonite</th>
<th>% Mg calcite</th>
<th>Mole % MgCO$_3$</th>
<th>% Aragonite</th>
<th>% Mg calcite</th>
<th>Mole % MgCO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–30</td>
<td>35.5</td>
<td>64.5</td>
<td>69</td>
<td>31</td>
<td>11.8</td>
<td>86</td>
<td>14</td>
<td>12.1</td>
<td>93</td>
<td>7</td>
<td>13.7</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>50–55</td>
<td>39.1</td>
<td>60.9</td>
<td>46</td>
<td>54</td>
<td>11.6</td>
<td>86</td>
<td>14</td>
<td>12.0</td>
<td>95</td>
<td>5</td>
<td>13.7</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>74–80</td>
<td>33.3</td>
<td>66.7</td>
<td>66</td>
<td>34</td>
<td>11.5</td>
<td>87</td>
<td>13</td>
<td>12.6</td>
<td>90</td>
<td>10</td>
<td>12.2</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td>100–105</td>
<td>34.9</td>
<td>65.1</td>
<td>64</td>
<td>36</td>
<td>11.7</td>
<td>86</td>
<td>14</td>
<td>10.7</td>
<td>90</td>
<td>10</td>
<td>12.2</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td>130–134</td>
<td>34.3</td>
<td>65.7</td>
<td>64</td>
<td>36</td>
<td>12.2</td>
<td>86</td>
<td>14</td>
<td>11.4</td>
<td>90</td>
<td>10</td>
<td>12.2</td>
<td>89</td>
<td>11</td>
</tr>
</tbody>
</table>

Average values for percent of Mg-calcite 38.2 13.8 9.4

Table 4.—Mineralogical analyses of the carbonate in the clay-, silt-, and sand-size fractions of samples from core P00-1, Almirante Bay, Panama.

<table>
<thead>
<tr>
<th>Depth interval in core (cm)</th>
<th>% Clay in mud</th>
<th>% Silt in mud</th>
<th>% Mg calcite</th>
<th>Mole % MgCO$_3$</th>
<th>% Aragonite</th>
<th>% Mg calcite</th>
<th>Mole % MgCO$_3$</th>
<th>% Aragonite</th>
<th>% Mg calcite</th>
<th>Mole % MgCO$_3$</th>
<th>% Aragonite</th>
<th>% Mg calcite</th>
<th>Mole % MgCO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30–35</td>
<td>27.8</td>
<td>72.2</td>
<td>53</td>
<td>47</td>
<td>13.7</td>
<td>82</td>
<td>18</td>
<td>12.3</td>
<td>84</td>
<td>16</td>
<td>12.7</td>
<td>84</td>
<td>16</td>
</tr>
<tr>
<td>50–55</td>
<td>41.2</td>
<td>58.8</td>
<td>46</td>
<td>54</td>
<td>12.6</td>
<td>86</td>
<td>14</td>
<td>12.0</td>
<td>93</td>
<td>7</td>
<td>12.8</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>80–85</td>
<td>47.6</td>
<td>52.4</td>
<td>62</td>
<td>38</td>
<td>13.9</td>
<td>88</td>
<td>12</td>
<td>11.3</td>
<td>91</td>
<td>9</td>
<td>12.7</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>100–105</td>
<td>26.6</td>
<td>73.4</td>
<td>42</td>
<td>58</td>
<td>12.4</td>
<td>85</td>
<td>15</td>
<td>12.5</td>
<td>83</td>
<td>17</td>
<td>13.7</td>
<td>83</td>
<td>17</td>
</tr>
</tbody>
</table>

Average values for percent of Mg-calcite 50.2 16.0 12.6
difficult to distinguish from both aragonite grains and terrestrial clay particles.

The dominant carbonate encrusting organisms on *Thalassia* seagrass blades in both the Belize and Panama lagoons are crustose coralline algae (Fig. 8A). These encrusters are most abundant in waters less than 1 meter deep. Five samples from Belize and six from Panama gave an average value of 11.6 mole % MgCO₃ with a range of 10.5 to 13.0. Since the range of their mole % MgCO₃ is within that found in our mud samples, it seemed worthwhile to examine their skeletal structure under the scanning electron microscope. These corallines have a particularly distinctive radiating coralline cellular pattern (Fig. 8B), which was found in only trace amounts in several silt-size SEM photomicrographs.

DISCUSSION

Most of the clay-size Mg-calcite in our lagoonal cores has a physicochemical rather than biological origin. We found an inadequate supply of skeletal Mg-calcite in coarser fractions to produce major quantities of clay-size biological Mg-calcite. Mg-calcite skeletal grains would have to be present in significant amounts in the coarser fractions to produce clay-size biological Mg-calcite in the quantities that we found in our cores. Instead, the silt- and sand-size fractions in our samples contain minor amounts of Mg-calcite, averaging only 13.8% (Belize, Table 3) and 16% (Panama, Table 4) in the silt-size fractions and 9.4% (Belize) and 12.6% (Panama) for sand. However, the average value of Mg-calcite in our clay-size fractions is 38.2% for Belize (Table 3) and 50.2% for Panama (Table 4).

This conclusion is corroborated by the results of our thin-section analyses (Table 5). Crustose coralline algae and echinoid grains never exceed 10% of the constituent grains. Although Matthews (1966) also noted this enrichment of Mg-calcite in southern Belize lagoonal sediment mud fractions (up to 70%), he discounted precipitation as a possible source while failing to substantiate a skeletal source. It might be argued that the concentrations of Mg-calcite in the clay-size fractions are due to selective dissolution of clay-size aragonite. However, our samples show no evidence of extensive etching of aragonite needles (Fig. 5A). It is therefore evident that a concentration of Mg-calcite in the clay-size fractions, with only minor amounts in the coarser sand-and silt-size fractions of the same samples (Tables 3 and 4) does not indicate a gradual disintegration of skeletal material to provide biological clay-size Mg-calcite.

Additional evidence that argues against a biological source for the clay-size Mg-calcite is the lack of significant variation in the amount of Mg-calcite in the Belize and Panama lagoon muds (28.8 ± 2.7% and 32.6 ± 8.3% respectively) in continuous core logs (Fig. 3), as well as the consistent composition (12.4 ± 0.3 to 12.4 ± 0.4 mole % MgCO₃) in the calcite fractions. As indicated in Tables 1 and 2, the Mg-calcite of muds from both Belize and Panama also have a limited variation in mole % MgCO₃: five samples from different locations in Belize give an average value of 12.4 ± 0.2; similarly, samples along the lengths of three cores from Panama range in average value from 12.1 ± 0.6 to 12.8 ± 0.3. Although detailed study of clay-size fractions from both Belize and Panama (Tables 3 and 4) reveal a wider range of mole % MgCO₃ (11.5 to 13.9), it is not great enough to suggest a skeletal source for the Mg-calcite. It is not reasonable to expect such consistent values in so many samples to result from a variety of Mg-calcite skeletons when their skeletal composition shows such variation in mole % MgCO₃ (Milliman 1974).
One possible skeletal source for Mg-calcite in our muds could be the epiphytic growths on seagrass blades, particularly crustose coralline algae. Crustose coralline epibionts on *Thalassia* blades are considered an important source of Mg-calcite mud in Jamaica (Land 1970), Barbados (Patriquin 1972), and Florida Bay (Nelson and Ginsburg 1986). However, the characteristic cellular structure of the crustose coralline algae that encrust *Thalassia* blades occurs in only trace amounts in the silt-size fractions of our lagoonal muds and is a minor constituent in our sand fractions, which show an average of 2% for Belize and 6% for Panama (Table 5). The mole % MgCO₃ values obtained from these encrusting coralline algae indicate that some of the Mg-calcite in our mud samples could be derived from these encrusting epiphytes. This source of Mg-calcite, however, must be minor because of the significant lack of Mg-calcite in the silt- and sand-size fractions and the remarkable concentration in the clay-size fractions (Tables 3, 4). This and the lack of crustose corallines in SEM and thin sections are not indicative of the breakdown patterns that would suggest that they are an important source of Mg-calcite muds in these lagoons.

Compared to Panama, the lower percentages of Mg-calcite in the Belize clay-size fractions are related to the abundance of *Halimeda* needles in the silt-size fractions, which is a reflection of the larger amounts of *Halimeda* in the sand-size fractions. This indicates that although *Halimeda* is commonly an important source of micritized grains (Trumbull 1988; Reid and Macintyre 1998), particularly in current-swept environments (Macintyre and Reid 1995), it can disintegrate in low-wave-energy and muddy conditions to provide significant amounts of clay-size needles. Indeed the needles in the clay-size fractions from Belize are the same size as original skeletal needles from *Halimeda* (Macintyre and Reid 1995).

Reid et al. (1992) suggested that most of the Mg-calcite muds in the shallow northern Belize lagoon have resulted from the breakdown of Mg-calcite micritized skeletal fragments, because skeletal grains clearly alter to Mg-calcite in this area and the micritic texture of the altered grains is similar to that in the muds. However, they did not rule out the possibility of some direct physicochemical precipitation of minimicritic Mg-calcite. Our study suggests that direct precipitation is probably a more important source of Mg-calcite muds in this area than they suspected. This view is also supported by the presence of whittings in the northern shelf lagoon (Purdy and Gischler 2003). Because skeletal grains are well preserved in the central Belize lagoon and Almirante Bay, Panama, sediments, Mg-

Table 5. Percent composition of sand-size fraction from Belize and Panama cores.

<table>
<thead>
<tr>
<th>Location and Depth in Core (cm)</th>
<th>Location</th>
<th>Corals</th>
<th>Echinoids</th>
<th>Mollusks</th>
<th>Foraminifera</th>
<th>Halimeda</th>
<th>Worm Tubes</th>
<th>Coralline Algae</th>
<th>Unknown</th>
<th>Misc Octocoral Sclerites</th>
<th>Bryozoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core BZ02-05 Cat Cay, Belize</td>
<td>25–30</td>
<td>62</td>
<td>7</td>
<td>5</td>
<td>TR</td>
<td>22</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–55</td>
<td></td>
<td>61</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>75–80</td>
<td></td>
<td>68</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–105</td>
<td></td>
<td>58</td>
<td>3</td>
<td>2</td>
<td>TR</td>
<td>29</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130–136</td>
<td></td>
<td>59</td>
<td>7</td>
<td>4</td>
<td>-</td>
<td>24</td>
<td>TR</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV</td>
<td></td>
<td>62%</td>
<td>6%</td>
<td>3%</td>
<td>TR</td>
<td>23%</td>
<td>TR</td>
<td>2%</td>
<td>2%</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Core P00-1 Almirante Bay, Panama</td>
<td>30–35</td>
<td>70</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>TR</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>50–55</td>
<td></td>
<td>90</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>TR</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80–85</td>
<td></td>
<td>80</td>
<td>8</td>
<td>5</td>
<td>TR</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–105</td>
<td></td>
<td>78</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125–130</td>
<td></td>
<td>74</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>AV</td>
<td></td>
<td>78%</td>
<td>6%</td>
<td>5%</td>
<td>TR</td>
<td>1%</td>
<td>TR</td>
<td>6%</td>
<td>3%</td>
<td>TR</td>
<td></td>
</tr>
</tbody>
</table>

TR=trace amounts.

Fig. 6. Photomicrographs illustrating the well preserved condition of sediment grains in the sand-size fractions. A) Core BZ02-5, 50–55 cm, Cat Cay, Belize; dominantly unaltered coral (C) and *Halimeda* (H) grains. B) Core P00-1, 30–35 cm, Almirante Bay, Panama; freshly preserved coral (C) with a trace of crustose coralline algae (CA).
calcite in the mud fractions cannot be attributed to the detrition of diagenetically altered Mg-calcite grains.

When we compared the amount of Mg-calcite and the mole % MgCO₃ content of our samples with those reported by Reid et al. (1992), we found little difference: the clay-size fractions of their southern Belizean shelf sediments—in the deeper fore reef 56% with a mole % MgCO₃ of 13.5; in the lagoonal mangrove islands 47% with a mole % MgCO₃ of 12; and 54% with a mole % MgCO₃ of 13 in a back-reef cave. In addition Reid et al. (1992) also reported that a clay-size fraction from Cross Bank, Florida, contained 35% Mg-calcite with a mole % MgCO₃ of 12.5 along with a bulk mud sample from off West Andros Island consisting of 14% of 12 mole % MgCO₃. It therefore appears that Mg-calcite precipitation occurs throughout tropical-reef environments but when deposited in sediments, it does not become lithified.

Lagoonal surface sediments of three Belizean offshore atolls reportedly have as much as 40% “high magnesium calcite” (Gischler and Zingeler 2002, p. 1062) in their silt-size and clay-size fractions. The abundance of “nanograins” (p. 1065) in their clay-size fractions is identical to the Mg-calcite anhedral minicrime found in our cores. Hence, the source of this material could be precipitated Mg-calcite rather than the suggested algal aragonite for many of these grains. These similar amounts of Mg-calcite in atoll surface sediments may provide further evidence of the widespread precipitation of Mg-calcite muds in reef environments. At the same time, our analyses indicate that the lagoonal muds of the rhomboid shoals of Belize and Almirante Bay, Panama, are predominantly aragonite and that the decreasing amounts of aragonite in the sand-, silt-, and clay-size fractions (Tables 2 and 3) does suggest a skeletal source in this instance. We therefore agree with Matthews (1966) and Gischler and Zingeler (2002) that the aragonite fractions in our lagoonal muds are derived from the breakdown of aragonite skeletal material.

Mg-calcite precipitates tend to be overlooked in lagoonal settings because submarine lithification is rare in these areas. Nonetheless, micritic Mg-calcite appears to precipitate in or near the sea-floor surface in all tropical-reef environments during normal water conditions, settling in intergranular or reef-framework space. In the open reef framework or borings or cavities in surfaces exposed to open water for long periods of time.
time, this micritic material becomes lithified in the form of micritic crusts or dense void-filling micritic deposits. Even under low-wave-energy conditions on the ceiling of an open cave, thick crusts of dense micritic Mg-calcite form on the upper surfaces of serpulid worm-tube projections (Macintyre 1984). Thin sections of these dense cappings in this cave, which also occurs in the southern Belizean lagoon about 30 km north of our rhomboidal shoals study site, show a texture identical to the mud matrix in our cores, with the exception that the micritic Mg-calcite is lithified. In mud-rich sediments, however, the micritic Mg-calcite precipitates are isolated from open water and therefore remain unlithified deposits. Perhaps surface biofilms need to be present before mud deposits can become lithified, a condition that occurs only in open and commonly high-wave-energy settings. Further research is needed to explain the lithification of Mg-calcites precipitates that are deposited in settings open to ambient waters.

Although this study was restricted to coral-reef environments, micritic Mg-calcite may well be precipitated in settings of other open tropical waters. For example, unlithified muds of the shallow Persian Gulf sea floor are enriched with Mg-calcite (>15%; Shinn 1969, p. 133). In that area, “submarine cementation is observed to be most pronounced” in sand-size sediment (p. 122). This is further evidence that lithification of the substrate in shallow tropical environments is related to the ability of water to penetrate the sea floor, whether sediment or reef framework.

This first report of micritic Mg-calcite precipitates in the lagoons of Belize and Panama may have analogs in the fossil record. The most obvious example is the Pleistocene limestone below the mangrove islands of Twin Cays, Belize, just 16 km north of our study site (Macintyre and Toscano 2004). This limestone, which has been subaerially altered to calcite, consists of branching Porites in a dense microcrystalline matrix and is an almost identical example of the Porites in mud sections that we cored in Panama. Extending even further into the fossil record, there are some similarities, on a grander scale, to the “inorganic production of lime mud” (p. 1293) in a low-energy setting for the formation of thick Late Jurassic lime-mud deposits in Mississippi (Heydari and Wade 2002). Furthermore, there could be some relationship of our lagoonal mud deposits to the numerous occurrences of fossil carbonate mud mounds—for example in Spain in both the Lower Cretaceous (Neuweiler et al. 1999) and the Upper Carboniferous (Porta et al. 2004), the Devonian mud mounds of Belgium (Boulvain 2001), and the Jurassic sponge mounds of Morocco (Neuweiler et al. 2001), to just mention a few recent examples. These carbonate mud mounds have generally been considered to be large deposits of microbial carbonate mud (see Monty 1995; Pratt 1995; and Riding 2000). More recently this microbial origin has been called into question by Neuweiler et al. (2003) on the basis of earlier work on the mud mounds of Spain (Neuweiler et al. 1999). In this latter publication Neuweiler et al. (2003) pointed out that the microbial origin of these mounds has been based on petrographic textures such as fine laminations and peloids, traditionally accepted as indicating microbial activity, with no evidence of the direct role of microorganisms. They suggested that fluorescence spectrometry and rare-earth-element distribution both indicate that the catalyst for automicrite (“in situ precipitated marine microcrystalline calcite,” p. 681) precipitation in these mud mounds is marine fulvic compounds and humification under suboxic conditions.

A similar controversy has existed in the study of the origin of internal micritic deposits in modern coral-reef frameworks. Impressed with the laboratory experiments of Towe and Malone (1970), in which they released ammonium carbonate (a by-product of organic decay) in seawater and precipitated both aragonite and Mg-calcite, Macintyre (1984) and Macintyre and Marshall (1988) suggested that a major factor in the precipitation of reefal micritic deposits is the decay of trapped organic debris. Others have suggested that the precipitation of micritic carbonate in coral reefs is related to photosynthesis of reef communities (Friedman et al. 1974; Epstein and Friedman 1982) and microbial sulfate reduction (Pigott and Land 1986). More recently there has been the emphasis of petrographic textures (both laminations and peloids), traditionally accepted as indicating microbial activity, with no evidence of the direct role of microorganisms. They suggested that fluorescence spectrometry and rare-earth-element distribution both indicate that the catalyst for automicrite (“in situ precipitated marine microcrystalline calcite,” p. 681) precipitation in these mud mounds is marine fulvic compounds and humification under suboxic conditions.

In this study of lagoonal sediments of Belize and Panama there are two significant factors that suggest physicochemical rather than a skeletal or direct microbial origin for the majority of the micritic Mg-calcite fraction. First, there is the closely associated extensive micritic Mg-calcite precipitates on the ceiling in a lagoonal cave in Belize (Macintyre 1984) that have similar texture and composition to the lagoonal micritic deposits (i.e., Chafetz 1986; Brachert and Dullo 1991; Montaggioni and Camoin 1993; Camoin et al. 1999). In the study by Chafetz (1986) he indicated that some peloids contained “fossil bacterial clumps” (p. 812) but later noted that “the great majority of peloids observed in etched samples did not display any evidence of the presence, or former presence of bacteria” (p. 814). A very recent paper by Bosak et al. (2004) clearly demonstrated that peloidal crusts can be formed by “purely abiotic mechanisms” (p. 189). Therefore, better evidence than petrographic textures of fine banding and peloids is needed to identify a direct role of microbes in the precipitation of micritic carbonate.

Although this study was restricted to coral-reef environments, micritic Mg-calcite may well be precipitated in settings of other open tropical waters. For example, unlithified muds of the shallow Persian Gulf sea floor are enriched with Mg-calcite (>15%; Shinn 1969, p. 133). In that area, “submarine cementation is observed to be most pronounced” in sand-size sediment (p. 122). This is further evidence that lithification of the substrate in shallow tropical environments is related to the ability of water to penetrate the sea floor, whether sediment or reef framework.

This first report of micritic Mg-calcite precipitates in the lagoons of Belize and Panama may have analogs in the fossil record. The most obvious example is the Pleistocene limestone below the mangrove islands of Twin Cays, Belize, just 16 km north of our study site (Macintyre and Toscano 2004). This limestone, which has been subaerially altered to calcite, consists of branching Porites in a dense microcrystalline matrix and is an almost identical example of the Porites in mud sections that we cored in Panama. Extending even further into the fossil record, there are some similarities, on a grander scale, to the “inorganic production of lime mud” (p. 1293) in a low-energy setting for the formation of thick Late Jurassic lime-mud deposits in Mississippi (Heydari and Wade 2002). Furthermore, there could be some relationship of our lagoonal mud deposits to the numerous occurrences of fossil carbonate mud mounds—for example in Spain in both the Lower Cretaceous (Neuweiler et al. 1999) and the Upper Carboniferous (Porta et al. 2004), the Devonian mud mounds of Belgium (Boulvain 2001), and the Jurassic sponge mounds of Morocco (Neuweiler et al. 2001), to just mention a few recent examples. These carbonate mud mounds have generally been considered to be large deposits of microbial carbonate mud (see Monty 1995; Pratt 1995; and Riding 2000). More recently this microbial origin has been called into question by Neuweiler et al. (2003) on the basis of earlier work on the mud mounds of Spain (Neuweiler et al. 1999). In this latter publication Neuweiler et al. (2003) pointed out that the microbial origin of these mounds has been based on petrographic textures such as fine laminations and peloids, traditionally accepted as indicating microbial activity, with no evidence of the direct role of microorganisms. They suggested that fluorescence spectrometry and rare-earth-element distribution both indicate that the catalyst for automicrite (“in situ precipitated marine microcrystalline calcite,” p. 681) precipitation in these mud mounds is marine fulvic compounds and humification under suboxic conditions.

A similar controversy has existed in the study of the origin of internal micritic deposits in modern coral-reef frameworks. Impressed with the laboratory experiments of Towe and Malone (1970), in which they released ammonium carbonate (a by-product of organic decay) in seawater and precipitated both aragonite and Mg-calcite, Macintyre (1984) and Macintyre and Marshall (1988) suggested that a major factor in the precipitation of reefal micritic deposits is the decay of trapped organic debris. Others have suggested that the precipitation of micritic carbonate in coral reefs is related to photosynthesis of reef communities (Friedman et al. 1974; Epstein and Friedman 1982) and microbial sulfate reduction (Pigott and Land 1986). More recently there has been the emphasis of petrographic textures (both laminations and peloids), traditionally accepted as indicating microbial activity, with no evidence of the direct role of microorganisms. They suggested that fluorescence spectrometry and rare-earth-element distribution both indicate that the catalyst for automicrite (“in situ precipitated marine microcrystalline calcite,” p. 681) precipitation in these mud mounds is marine fulvic compounds and humification under suboxic conditions.

In this study of lagoonal sediments of Belize and Panama there are two significant factors that suggest physicochemical rather than a skeletal or direct microbial origin for the majority of the micritic Mg-calcite fraction. First, there is the closely associated extensive micritic Mg-calcite precipitates on the ceiling in a lagoonal cave in Belize (Macintyre 1984) that have similar texture and composition to the lagoonal micritic deposits (i.e., Chafetz 1986; Brachert and Dullo 1991; Montaggioni and Camoin 1993; Camoin et al. 1999). In the study by Chafetz (1986) he indicated that some peloids contained “fossil bacterial clumps” (p. 812) but later noted that “the great majority of peloids observed in etched samples did not display any evidence of the presence, or former presence of bacteria” (p. 814). A very recent paper by Bosak et al. (2004) clearly demonstrated that peloidal crusts can be formed by “purely abiotic mechanisms” (p. 189). Therefore, better evidence than petrographic textures of fine banding and peloids is needed to identify a direct role of microbes in the precipitation of micritic carbonate.

In this study of lagoonal sediments of Belize and Panama there are two significant factors that suggest physicochemical rather than a skeletal or direct microbial origin for the majority of the micritic Mg-calcite fraction. First, there is the closely associated extensive micritic Mg-calcite precipitates on the ceiling in a lagoonal cave in Belize (Macintyre 1984) that have similar texture and composition to the lagoonal micritic deposits. Secondly, the LIMER 1975 report of very high ammonia levels found in Great Barrier Reef lagoonal sediments resulting from organic decay (LIMER 1976). More work is needed to identify the direct or indirect roles of microbes in the precipitation of micritic Mg-calcite in
coral-reef environments and the reason why this micrite is not lithified when trapped in sediments.

CONCLUSION

Magnesium calcite with 12–13 mole % MgCO₃ is a significant fraction of the mud matrix in the branching-coral facies of both the central shelf lagoon of Belize and Almirante Bay in Panama. Although calcite precipitation appears to occur in most reef settings, heretofore it had been noticed only in permeable substrate settings, where it becomes lithified in precipitation and dissolution in modern shallow-marine sediments: Geologiska Institut, Universitet Uppsala Bulletin, v. 7, p. 201–236.

ACKNOWLEDGMENTS

We are grateful for the field assistance of W.F. Precht, S. Castillo, M.A. Dardeau, M.L. Kellogg, A. Gunter, K. Parsons, T.J.T. Murdoch, M.E. Parrish, and A.G. Macintyre. Thanks to W.H. Ady for the identification on the crustose coralline algae. The manuscript benefited greatly from critical comments and discussions provided by R.N. Ginsburg, E.A. Shinn, R.P. Reid, and Associate Editors E. Heydari and M. Elrick and two reviewers of the manuscript, C. de Wet and J. Reijmer. In addition, we are indebted to the following people for their contributions to this study: D.A. Dean (thin sections), W.T. Boykins (X-ray diffraction and text layout), M.A. Logan (EDS), M.E. Parrish (drafting), and S.G. Braden and S.D. Whittaker (scanning electron microscopy). The Smithsonian Institution’s Caribbean Coral Reef Ecosystems (CCRE) supported our research at their Carrie Brown Cay field station, and the Smithsonian Tropical Research Institute (STRI) facilitated our work in Panama at its Bocas del Toro field station. This study was supported by grants from the CCRE Program (to I.G.M. and R.B.A.), the National Science Foundation (EAR-9902192 to R.B.A.), and the National Geographic Society (7041-01 to R.B.A.). Additional financial support was provided by the Dauphin Island Sea Lab (DISL) and the Department of Marine Sciences, University of South Alabama. This is CCRE Contribution no. 721 and DISL Contribution no. 357.

REFERENCES

MARSHALL, J.F., AND DAVIES, P.J., 1981, Submarine lithification on windward reef:

MARSHALL, J.F., 1986, Regional distribution of submarine cements within an
epicontinental reef system: central Great Barrier Reef, Australia, in Schroeder, J.H.,

MARSHALL, J.F., AND DAVIES, P.J., 1981, Submarine lithification on windward reef
slopes Capricorn-Bunker Group, southern Great Barrier reef: Journal of Sedimentary

MATTHEWS, R.K., 1966, Genesis of Recent lime mud in southern British Honduras:

MONTAGGIONI, L.F., AND CAMOIN, G.F., 1993, Stromatolites associated with coralgal
communities in Holocene high-energy reefs: Geology, v. 21, p. 149–152.

MONTY, C.L.V., 1995, The rise and nature of carbonate mud-mounds: an introductory
actualistic approach, in Monty, C.L.V., Bosence, D.W.J., Bridges, P.H., and Pratt,
B.R., eds., Carbonate Mud-Mounds: International Association of Sedimentologists,

NELSON, J.E., AND GINSBURG, R.N., 1986, Calcium carbonate production by epibionts

NEUWEILER, F., GAUTRET, P., THEIL, V., LANGES, R., MICHAELIS, W., AND REITNER, J.,
1999, Petroleo of Lower Cretaceous carbonate mud mounds (Albian, N. Spain):
insights into organomineralic deposits of the geological record: Sedimentology, v. 96,
p. 837–859.

NEUWEILER, F., MENDI, M., WILMSEN, O., AND WILMSEN, M., 2001, Facies of Liassic

NEUWEILER, F., d’ORAZIO, V., IMENHAUSER, A., GEIPEL, G., HEISE, K.-H., COCOZZA, C.,
AND MANO, T.M., 2003, Fulvic acid-like organic compounds control nucleation of

PATRICK, D.G., 1972, Carbonate mud production by epibionts on Thalassia: an estimate

POGOT, J.D., AND LAND, L.S., 1986, Interstitial water chemistry of Jamaican reef
sediment: sulfate reduction and submarine cementation: Marine Chemistry, v. 19,

PORTA, G.D., KENTER, J.A.M., AND BAHAMONDE, J.R., 2004, Depositional facies and
stratal geometry of an Upper Carboniferous prograding and aggrading high-relief
267–295.

PRATT, B.R., 1995, The origin, biota and evolution of deep-sea mud-mounds, in Monty,
C.L.V., Bosence, D.W.J., Bridges, P.M., and Pratt, B.R., eds., Carbonate Mud-Mounds:
International Association of Sedimentologists, Special Publication 23, p. 49–125.

532–551.

environments: A widespread diagenetic process forming micritized grains: Journal of

REID, R.P., MACINTYRE, I.G., AND JAMES, N.P., 1990, Internal precipitation of
microcrystalline carbonate: A fundamental problem for sedimentologists: Sedimen-

REID, R.P., MACINTYRE, I.G., AND POST, J.E., 1992, Micritized skeletal grains in northern
Belize lagoon: A major source of Mg-calcite mud: Journal of Sedimentary Petrology,
v. 62, p. 145–156.

Riding, R., 2000, Microbially mediated calcification: the geologic record of calcified bacterial-algal

SCHROEDER, J.H., 1972a, Calcified filaments of an endolithic alga in Recent
Bermuda reefs: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 1,
p. 16–33.

SCHROEDER, J.H., 1972b, Fabrics and sequences of submarine carbonate cements in

SCHROEDER, J.H., AND ZANKL, H., 1974, Dynamic reef formation: a sedimentological
concept based on studies of recent Bermuda reefs: Second International Coral Reef

SHEH, Z.A., 1969, Submarine lithification of Holocene carbonate sediments in the

SHEH, Z.A., 1971, Aspects of diagenesis of Recent Bermuda cup reefs: Gulf Coast

SCHROEDER, J.H., LINZ, B., ROBBINS, D.M., AND MACINTYRE, I.G., 1982, Geology and sediment accumulation rates at Carrie Bow Cay, Belize, in Rützler, K.,
and Macintyre, I.G., eds., The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay,
Belize: 1. Washington: D.C., Smithsonian Institution Press, Smithsonian Contribu-
tions to the Marine Sciences, no. 12, p. 63–75.

TOWE, K.M., AND MALONE, P.R., 1970, Precipitation of metastable carbonate phases

TRUMBULL, W.J., 1988, Depositional history of a windward open marginal lagoon:
Northern Great Bahama Bank (unpublished MS thesis): Chapel Hill, North Carolina,
University of North Carolina, 122 p.

Received 8 April 2004; Accepted 11 March 2005.