Floristic and climatic reconstructions of two Lower Cretaceous successions from Peru

Paula J. Mejia-Velasquez, Steven R. Manchester, Carlos A. Jaramillo, Luis Quiroz & Lucas Fortini

To cite this article: Paula J. Mejia-Velasquez, Steven R. Manchester, Carlos A. Jaramillo, Luis Quiroz & Lucas Fortini (2018) Floristic and climatic reconstructions of two Lower Cretaceous successions from Peru, Palynology, 42:3, 420-433, DOI: 10.1080/01916122.2017.1373310

To link to this article: https://doi.org/10.1080/01916122.2017.1373310

View supplementary material

Published online: 16 Oct 2017.

Submit your article to this journal

Article views: 121

View Crossmark data
Floristic and climatic reconstructions of two Lower Cretaceous successions from Peru

Paula J. Mejia-Velasquez, Steven R. Manchester, Carlos A. Jaramillo, Luis Quiroz and Lucas Fortini

Math and Sciences Division, University of Hawaii – Leeward Community College, 96-045 Ala Ike, Pearl City, Hawaii, USA; Florida Museum of Natural History and Biology Department, University of Florida, PO Box 117800, Gainesville, Florida 32611-7800, USA; Smithsonian Tropical Research Institute, Panama City, Republic of Panama; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada; U.S. Geological Survey, Pacific Island Ecosystems Research Center, 677 Ala Moana Blvd. suite 320, Honolulu, Hawaii, USA

ABSTRACT
Climate during the Early Cretaceous in tropical South America has often been reconstructed as arid. However, some areas seem to have been humid. We reconstructed the floristic composition of two tropical stratigraphic successions in Peru using quantitative palynology (rarefied species richness and abundance), and used the abundance of aridity vs. humidity indicator species to infer the predominant climate conditions of this region. The Berriasian to Hauterivian La Merced succession was dominated by fern spores and was predominantly humid. The Albian Aguas Frias succession yielded rich palynofloras, with 127 species, and also indicates predominantly humid conditions. These results support the hypothesis that the west margin of South America was humid during the Early Cretaceous, thus improving the tropical climate reconstructions during the Cretaceous severe global warming episodes.

1. Introduction
One of the warmest episodes in Earth’s history was the Cretaceous Period (Hay & Floegel 2012). Some of the Early Cretaceous ages, e.g. Aptian–Albian, were characterised by elevated worldwide temperatures and very high mean annual tropical temperatures, which reached ~31 °C (Schouten et al. 2003), elevated levels of CO₂ up to ~1000 ppm (Breecker et al. 2010) and the initial diversification of flowering plants (Wang et al. 2009; Moore et al. 2010). Whether the hot tropical belt of the Early Cretaceous was arid or humid remains controversial (Mejia-Velasquez et al. 2012). This question is essential to the understanding of tropical ecosystem functioning during global warming times, as water availability is as important as temperature for plant performance (Cernusak 2013; Cheesman & Winter 2013).

Most climate reconstructions of terrestrial environments during the Early Cretaceous depict tropical latitudes as arid (Ziegler et al. 1987; Chumakov et al. 1995). These reconstructions are mainly based on lithologic evidence, such as the presence of evaporites and the distribution of climate-sensitive fossils (Chumakov et al. 1995). Some palynological studies also suggest that the tropical latitudes were arid (Hemgreen et al. 1996). In contrast, global circulation climatic models suggest that tropical latitudes were humid (Fluteau et al. 2007), as do some palynological studies (de Lima 1983; Thrus et al. 1988; Hemgreen & Dueñas Jimenez 1990; Schrank 1992; Mejia-Velasquez et al. 2012). Pollen and spores can be excellent sources of data for floristic reconstructions and climate inference (Traverse 2007). Well-preserved pollen and spores of Early Cretaceous age are abundant in tropical latitudes, and a few grams of sediment can potentially provide large sample sizes suitable for accurate floristic reconstructions with strong statistical support. However, most previous palynological studies of Cretaceous tropical floras focused on biostratigraphy dealing only with a selected set of taxa rather than complete floras. Therefore, there is a need for quantitative analyses of tropical floras to determine whether climate in the tropical latitudes during the Early Cretaceous was arid or humid.

Here, we present a quantitative analysis of the palynological content of two Early Cretaceous successions from Peru, with the goals of (i) reconstructing the floristic composition using pollen and spores and (ii) assessing whether the climate was humid or arid.

2. Materials and methods
2.1. Geologic setting
Samples were collected from two outcrop successions, La Merced Succession in central Peru (Figures 1 and 2) and the Aguas Frias Succession in eastern Peru (Figures 1 and 3). The Lower Cretaceous sediments sampled belong to the Oriente Group, which spans from 1000 m in the east to 1700 m towards the west (Kummel 1948). The Oriente Group represents mainly fluvial deposition and it is composed primarily of cross-bedded sandstones with interbedding shales. The Oriente Group is underlain unconformably by the Sarayacuillo Formation (Upper Jurassic), and overlain by the Upper Cretaceous Chonta Formation (Kummel 1948). In the Contamana region, the Oriente Group is composed of three formations: (i) Cushabatay, (ii) Raya and (iii) Agua Caliente (Kummel 1948; Hermoza et al. 1990).
Palynomorphs were grouped into four groups: Cretaceous, Albian, and Raya Formations. The succession starts with a braided, mottled mudstone and thin-bedded sandstones, interpreted as medium to thick beds of coarse-grained and conglomeratic sandstones interbedded with mudstone beds, containing plant fragments and mica flakes. The environments of deposition range from shallow to marginal-marine environments in the Raya Formation to estuarine and tide-influenced channels in the Agua Caliente Formation.

2.2. Floristic composition

Twenty-five samples were analysed: 13 from the La Merced succession and 12 from the Aguas Frias succession (Figures 2 and 3). Samples were prepared following standard palynological techniques by Paleoflora Ltd. The procedure included the digestion of 10 grams of rock in hydrochloric acid (HCl) for 12 hours to remove the calcareous material, after which water was added and the solution was decanted. Hydrofluoric acid (HF) was then added to remove the silicates. Water was added and the acid solution was decanted after 24 hours. The resulting residue was passed initially through a 250-μm-mesh sieve to eliminate the coarse fraction, followed by sieving through a 10-μm-mesh sieve. The organic residue was cleaned using ultrasonic equipment for some seconds, and then concentrated by centrifugation, followed by mounting of a first cover slide in a solution of polyvinyl alcohol. A second cover slide was mounted after oxidation of the residue with nitric acid (HNO₃). Canadian balsam was used to seal both mounted slides. Each sample was labelled using three letters from their sampling outcrop (MER for La Merced and CTA for Contamana mountains, where the Aguas Frias succession was sampled) followed by a number (e.g. CTA 15-2).

Pollin and spores were identified to species level or assigned to an informal species if it had not been formally described. Informal species were named using a formal genus and an epithet enclosed in quotation marks, e.g. *Retitricolpites colpoverrucatus*. Palynomorphs were grouped into four groups: angiosperm pollen, non-gnetalean gymnosperm pollen, gnetalean pollen, and spores, to facilitate the description of the floristic composition. Gnetales were placed in their own category rather than lumped with all other gymnosperms, as they are an important component of equatorial Cretaceous floras (Hennig et al. 1996) as well as climate indicators. Non-gnetalean gymnosperms include conifers, cycads and Bennettitales.

Three hundred palynomorphs were counted per sample when possible. The floristic composition was determined from palynomorph abundance and rarefied species richness. Rarefaction is a technique that allows the comparison of richness between samples of different counts by recalculating the richness of each sample (i.e. rarefied richness) at the same counting level (Simberloff 1972). All counts per sample were rarefied to 250 and statistical comparisons among groups were performed using analysis of variance (ANOVA) and post hoc Tukey tests, to determine the significance of differences among the floristic components. ANOVA tests were used to determine whether there is a significant difference among several groups (p < 0.05), while the complementary post hoc Tukey test shows specifically which of the groups compared with the ANOVA test are significantly different from each other (Zar 2010). Results of the post hoc Tukey test are usually noted with letters: if two groups have the same letter (e.g. a-a) this indicates that there is not a

![Figure 1. Geographic location of the La Merced and Aguas Frias successions in Peru and the coals from the Caballos Formation in Colombia.](image)
significant difference between them (p > 0.05), while different letters (e.g. a-b) indicate that there is a significant difference between the groups (p < 0.05). Additionally, comparisons were made between the two successions to determine any significant differences in the abundance and rarefied richness of each floristic group using a t-test (Zar 2010). Finally, to compare the difference in species accumulation between the two successions, a bootstrapped species accumulation curve was calculated for each succession, according to the method described by Willoot (2001). All the aforementioned statistical tests were performed using R (R Foundation for Statistical Computing 2013). All microplankton (i.e. algae and dinoflagellates) and fungi were removed from the sample count prior to rarefaction, excluding them from any statistical analysis. Samples with counts <250 grains were also excluded from the statistical analyses. All samples are permanently archived and accessible at the Tropical Smithsonian Research Institute (STRI) in Panama City, Panama.

2.3. Climatic inferences

The most common approach to reconstruct humid vs. arid climates using pollen and spores is the abundance of indicator species (Schrank & Nesterova 1993; Mejia-Velasquez et al.)
2012). Cretaceous indicator species that suggest arid climates include both ephedroid pollen grains and Classopollis. Ephedroid pollen grains are used as aridity indicators because of their inferred affinities to modern Ephedra (Rydin et al. 2004) and Welwitschia (Dilcher et al. 2005). Classopollis are the pollen grains of the extinct gymnosperm family Cheirolepidiaceae. They have been inferred to indicate dry climates because their associated megafossils have reduced leaves, thick cuticles and sunken stomata (Watson & Alvin 1996).

Cretaceous indicators that suggest humid climates include fern spores (Schrank & Nesterova 1993; Mejia-Velasquez et al. 2012). However, some species of modern ferns (e.g. Cheilantes), as well as a few Cretaceous ferns (e.g. Onychiopsis and Weichselia), are known to have xerophytic characters such as reduced pinnules and sporangia embedded in protective tissue (Friis & Pedersen 1990; Friis et al. 2011). To assess which spore species were indicators of humid climates in the tropical latitudes of South America during the Lower Cretaceous, we analysed the palynological content of several tropical coal deposits. These analyses are independent from the floristic analyses performed for the La Merced and Aguas Frias successions, and are only intended to refine the method of climatic inferences using palynomorphs. The coals analysed are from core samples of the Caballos Formation in the Upper Magdalena Valley, in central Colombia (Figure 1). The Caballos Formation is predominantly sandy, interbedded with shales and thin coals, interpreted to have been deposited in estuarine systems (Florez & Carrillo 1993). Its age ranges from mid Aptian to mid Albian (Corrigan 1967; Beltran & Gallo 1968; Etayo 1993; Villamil 1998).

Eleven coal samples were obtained from eight different rock cores of the Caballos Formation from wells in the Huila region of Colombia: Quebrada la Barniza (01° 43′ 57.72″, −75° 56′ 22.92″), Quebrada El Pescador (02° 31′ 27.84″, −75° 25′ 54.84″), Mina El Castel (03° 15′ 29.88″, −75° 30′ 21.24″), Quebrada la Puerta (03° 19′ 58.08″, −75° 20′ 15″), Quebrada Parades (03° 18′ 28.80″, −75° 14′ 36.96″), Vereda el Chorrillo (02° 17′ 07.44″, −75° 49′ 39.72″), Quebrada Tafura (02° 59′ 17.16″, −75° 03′ 36.72″) and Vereda el Espejo (02° 59′ 35.88″, −75° 03′ 33.84″; Figure 1). All samples from the Caballos Formation coals were prepared and analysed following the same
procedures described for La Merced and Aguas Fria successions in section 2.2, ‘Floristic composition’.

We chose coals because they are thought to accumulate under humid conditions (Parrish et al. 1982) and rarely develop and become preserved in dry environments. Hence, the total abundances of the most common fern species in the coal samples were used as ‘strict’ humidity indicators. Alternatively, the total spore abundance is considered as ‘broad’ humidity indicators (Schrank & Nesterova 1993; Mejia-Velasquez et al. 2012). To determine whether it was more accurate to use ‘strict’ or ‘broad’ humidity indicators, we compared the differences of ‘strict’ (abundance of most common spores species) vs. ‘broad’ (total spore abundance) indicators using floristic data from three successions of Lower Cretaceous age: Aguas Fria (this study), Caballos Formation (Mejia-Velasquez et al. 2012) and Potomac Formation (Brenner 1963). We then correlated the ‘broad’ and ‘strict’ humidity indicators with the aridity indicators (epheidalean Gnetales and Classopollis) present in the same successions. Using this ad hoc approach, we would expect the indicator with higher negative correlation with aridity indicators to be the most reliable indicator of humid conditions. Because of the highly variable species counts across samples, including many absences, we calculated the correlation of aridity vs. ‘broad’ and ‘strict’ humidity indicators using three metrics. The first approach summed the abundance of all indicator species present in each group in a given sample (Schrank & Nesterova 1993; Mejia-Velasquez et al. 2012). This approach, however, can be influenced by outlier values, by sparse non-zero values and by the number of species chosen as indicator taxa. Hence, we also calculated a NonZeroMean metric, which is the mean number of individuals/indicator species present in each group in a given sample. Lastly, we calculated a NonZeroMedian metric, which is the median number of individuals/indicator species present in each group in a given sample. Because neither of those two metrics is based on total counts, they are not influenced by the number of chosen indicator species.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type of humidity indicator (spores)</th>
<th>Caballos Formation</th>
<th>Aguas Fria</th>
<th>Potomac</th>
</tr>
</thead>
<tbody>
<tr>
<td>NonZeroMedian</td>
<td>Broad</td>
<td>0.11</td>
<td>-0.39</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Strict</td>
<td>-0.35</td>
<td>-0.25</td>
<td>0.02</td>
</tr>
<tr>
<td>NonZeroMean</td>
<td>Broad</td>
<td>0.18</td>
<td>-0.18</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td>Strict</td>
<td>-0.09</td>
<td>-0.05</td>
<td>-0.12</td>
</tr>
<tr>
<td>Abundance</td>
<td>Broad</td>
<td>-0.21</td>
<td>0.19</td>
<td>-0.39</td>
</tr>
<tr>
<td></td>
<td>Strict</td>
<td>-0.13</td>
<td>0.2</td>
<td>-0.28</td>
</tr>
</tbody>
</table>

‘broad’ humidity indicators (Table 1). Based on these results, in further analyses we used the abundance of all spores as indicators of humidity (Figures 2 and 3).

3.2. Floristic composition of the La Merced succession

Sixty-six species of pollen and spores were found in the La Merced succession, including five species of angiosperm pollen, 12 of non-gnetalean gymnosperm pollen, two of gnetalean pollen and 49 of spores (Supplemental materials 2 and 3; Plates S1–S12). Total abundance and number of species per sample are shown in Table 2. Spores were significantly the most abundant and diverse palynomorphs, with an average of 79.2% of the abundance and 15 species (73.7%) on average per sample (Abundance $F_{3, 20} = 134.26, p < 0.01$; richness $F_{3, 20} = 44.9, p < 0.01$; Table 3 and Figure 5A). The most abundant spores (Figure 4) in this succession are Todisporites minor (41% on

<table>
<thead>
<tr>
<th>Succession/ sample</th>
<th>Height (m)</th>
<th>(A) Abundance of terrestrial palynomorphs</th>
<th>(B) Total number of species</th>
<th>(C) Sum of ‘broad’ humidity indicators</th>
<th>(D) Sum of aridity indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Merced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MER 5</td>
<td>65</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MER 6</td>
<td>93</td>
<td>252</td>
<td>21</td>
<td>232</td>
<td>0</td>
</tr>
<tr>
<td>MER 6-2</td>
<td>97</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MER 6-3</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MER 8</td>
<td>129</td>
<td>302</td>
<td>19</td>
<td>246</td>
<td>0</td>
</tr>
<tr>
<td>MER 7</td>
<td>134</td>
<td>321</td>
<td>16</td>
<td>295</td>
<td>0</td>
</tr>
<tr>
<td>MER 8</td>
<td>139</td>
<td>305</td>
<td>14</td>
<td>182</td>
<td>0</td>
</tr>
<tr>
<td>MER 9</td>
<td>153</td>
<td>342</td>
<td>20</td>
<td>314</td>
<td>0</td>
</tr>
<tr>
<td>MER 9-2</td>
<td>155</td>
<td>315</td>
<td>29</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>MER 9-3</td>
<td>157</td>
<td>318</td>
<td>30</td>
<td>212</td>
<td>0</td>
</tr>
<tr>
<td>MER 9-4</td>
<td>159</td>
<td>313</td>
<td>23</td>
<td>248</td>
<td>0</td>
</tr>
<tr>
<td>MER 7</td>
<td>507</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MER 12</td>
<td>524</td>
<td>46</td>
<td>10</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>MER 13</td>
<td>540</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aguas Fria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTA 18-2</td>
<td>0</td>
<td>363</td>
<td>49</td>
<td>118</td>
<td>29</td>
</tr>
<tr>
<td>CTA 18</td>
<td>6</td>
<td>320</td>
<td>35</td>
<td>183</td>
<td>14</td>
</tr>
<tr>
<td>CTA 20-2</td>
<td>26</td>
<td>328</td>
<td>34</td>
<td>189</td>
<td>14</td>
</tr>
<tr>
<td>CTA 20</td>
<td>36</td>
<td>325</td>
<td>39</td>
<td>189</td>
<td>37</td>
</tr>
<tr>
<td>CTA 18</td>
<td>46</td>
<td>346</td>
<td>38</td>
<td>233</td>
<td>32</td>
</tr>
<tr>
<td>CTA 18-3</td>
<td>60</td>
<td>348</td>
<td>48</td>
<td>173</td>
<td>23</td>
</tr>
<tr>
<td>CTA 17</td>
<td>85</td>
<td>354</td>
<td>52</td>
<td>66</td>
<td>85</td>
</tr>
<tr>
<td>CTA 16</td>
<td>142</td>
<td>357</td>
<td>20</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>CTA 15-2</td>
<td>175</td>
<td>322</td>
<td>19</td>
<td>93</td>
<td>3</td>
</tr>
<tr>
<td>CTA 15-3</td>
<td>211</td>
<td>365</td>
<td>35</td>
<td>124</td>
<td>39</td>
</tr>
<tr>
<td>CTA 15</td>
<td>222</td>
<td>386</td>
<td>43</td>
<td>101</td>
<td>46</td>
</tr>
<tr>
<td>CTA 14</td>
<td>255</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Correlation among aridity and multiple humidity indicators using all spores as ‘broad’ humidity indicators and selected spores or ‘strict’ humidity indicators from the Caballos Formation (Mejia-Velasquez et al. 2012), the Aguas Frias succession in this study and the Potomac sequence (Brenner 1963).

Table 2. Raw data summary for the La Merced and Aguas Fria successions. A, Total abundance of terrestrial palynomorphs. B, Number of species per sample. C, Sum of ‘broad’ humidity indicators per sample. D, Sum of aridity indicators per sample.

3. Results

3.1. Spores as indicators of humid climate

A total of 16 pollen and spores species were found in the 11 tropical Lower Cretaceous coal samples from the Caballos Formation, of which five were angiosperm pollen, one was non-gnetalean gymnosperm pollen, one was a gnetalean pollen and nine were spores (Supplemental online material 1: Plate S1). Spores were the most abundant palynomorphs with 99.5% of the abundance on average per sample (Supplemental material 1: Figures S1 and S2; Table S1). The most abundant spore species were Cyathidites minor, Cyathidites australis and Todisporites minor, which were selected as the ‘strict’ humidity indicators (Supplemental material 1: Figure S2).

Analyses undertaken to refine a selection of spore species for climate reconstructions were inconclusive, as they show that the three ‘strict’ humidity indicator species were not more strongly negatively correlated with their counterpart aridity indicators than were all spores (‘broad’ indicators), suggesting that the abundance of ‘strict’ indicators is not better at identifying humid conditions than are the total number of spores, or
average per sample; Plate 1, figure 5). *Cyathidites minor* (19% on average per sample; Plate 1, figure 3) and *Ruffordiaspora australiensis* (12.4% on average per sample; Plate 1, figure 4).

Non-gnetalean gymnosperms were the second most abundant and diverse palynomorph in this succession, with a 20.6% mean abundance and 5.1 (25.1%) species on average per sample (Table 3 and Figure 5A). The most common non-gnetalean gymnosperms (Figure 4) include *Araucariacites australis* (11.8% grains on average per sample), *Inaperturopollenites dubius* (4.7% on average per sample) and *Callialasporites dampieri* (3% on average per sample; Plate 1, figure 19).

The abundance and rarefied richness of angiosperm and gnetalean pollen were significantly lower compared to those of spores (post hoc Tukey test p > 0.01 for both; Table 3 and Figure 5A). Only five species of angiosperm pollen were found (Supplemental materials 2 and 3: Plate S1, figures 5, 13 and 21; Plate S2, figure 9; Plate S3, figure 1). The most abundant angiosperm species was *Retimococolpites ‘colpomaculosus’* (two grains on average per sample; Table 3). Quantitative data for the floristic composition and comparisons of La Merced and Aguas Frias successions. All species richness data are rarefied to 250 individuals per sample. Rarefied richness and relative abundances are the means (standard deviation – SD) of all samples per succession.

<table>
<thead>
<tr>
<th>Variable</th>
<th>La Merced</th>
<th>Aguas Frias</th>
<th>F-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. individuals</td>
<td>2468</td>
<td>3814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. samples (counts > 250)</td>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total no. of species</td>
<td>66</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average no. species per sample</td>
<td>23.5</td>
<td>37.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rarefied richness (SD at 250 count)</td>
<td>20.7 (5.8)</td>
<td>35.6 (10.13)</td>
<td>12.31</td>
<td>0.003</td>
</tr>
<tr>
<td>Average rarefied angiosperm richness</td>
<td>0.25 (0.43)</td>
<td>10.83 (4.31)</td>
<td>43.31</td>
<td>6.32E-06</td>
</tr>
<tr>
<td>Average rarefied non-gnetalean gymnosperm richness</td>
<td>5.36 (1.35)</td>
<td>6.26 (2.2)</td>
<td>0.92</td>
<td>0.352</td>
</tr>
<tr>
<td>Average rarefied Gnetales richness</td>
<td>0 (0)</td>
<td>7.63 (3.86)</td>
<td>26.8</td>
<td>9.16E-06</td>
</tr>
<tr>
<td>Average rarefied spore richness</td>
<td>15.12 (5.4)</td>
<td>10.88 (3.7)</td>
<td>3.93</td>
<td>0.065</td>
</tr>
<tr>
<td>Average angiosperm abundance</td>
<td>0.14% (0.25)</td>
<td>16.75% (12.17)</td>
<td>8.01</td>
<td>0.000026</td>
</tr>
<tr>
<td>Average non-gnetalean gymnosperm abundance</td>
<td>20.64% (12.13)</td>
<td>22.58 (20.09)</td>
<td>0.002</td>
<td>0.967</td>
</tr>
<tr>
<td>Average Gnetales abundance</td>
<td>0% (0)</td>
<td>14.52 (12.17)</td>
<td>11.95</td>
<td>0.003</td>
</tr>
<tr>
<td>Average spore abundance</td>
<td>79.22 (12.04)</td>
<td>46.14 (21.98)</td>
<td>13.13</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Figure 4. Most abundant palynomorph species in the La Merced and Aguas Frias successions.
Only one triaperturate species of angiosperm pollen (Peritectosyncolpites aff. giganteus; Plate 1, figure 12) was found towards the top of the succession (sample MER-12), but this sample was not included in the statistical analyses because the number of taxa on the slide that included this taxon was <250 grains (46 grains). Only two pollen grains of gnetalean affinity were found in this succession, Ephedripites costaliferus and Gnetaceaeopollenites braghoornii, but they were also found in samples for which the prepared slides contained <250 individuals and were therefore excluded from our quantitative analyses.

The sum of ‘broad’ humidity indicators represented a mean of 80.5 ± 12.1% per sample, while the ‘strict’ humidity indicators accounted for 49.6 ± 20.5% on average per sample. Aridity indicators were tallied at zero since, as mentioned above, the two ephedroid grains found in this succession were present in samples with <250 count that were not included in the statistical analyses (Table 2 and Figure 2).

3.3. Floristic composition of the Aguas Frias succession

A terrestrial palynoflora of 127 species was identified in Aguas Frias, including 46 species of angiosperms, 15 of non-gnetalean gymnosperms, 25 of gnetaleans and 41 of spores (Supplemental materials 2 and 3: Plates S1–S12). Total abundance and number of species per sample are shown in Table 2. Spores were significantly the most abundant palynomorph in this succession (average: 46.15 ± 21.98%, F3,40 = 8.01, p < 0.01; Table 3 and Figure 5B), while the relative abundances from the three remaining groups were not significantly different from one another (angiosperms 16.75%, gnetaleas 14.52% and non-gnetalean gymnosperms 22.58%; post hoc Tukey test p > 0.05 for all of them; Table 3 and Figure 5B).

Angiosperms and spores had similar species richness, averaging 10.8 (30.9%) and 10.8 (30.8%) species per sample, respectively, in rarefied counts of 250 (post hoc Tukey test p > 0.05; Table 3 and Figure 5B). The most abundant spores (Figure 4) were Todisporites minor (14.9% spores on average per sample), Cymbeloapartes panuncus (9.9% spores on average per sample; Plate 1, figure 1), and Cyathidites minor (6.7% spores on average per sample; Plate 1, figure 3). The most abundant angiosperms include Retimonocolpites matruhensis (4.3% on average per sample; Plate 1, figure 14), Retimonocolpites ‘definitus’ (2.7% on average per sample; Plate 1, figure 14), Retimonocolpites ‘definitus’ (2.7% on average per sample; Plate 1, figure 14), Retimonocolpites ‘definitus’ (2.7% on average per sample; Plate 1, figure 14), and Psilatricolpites tetradus (1.1% on average per sample; Plate 1, figure 11). Non-gnetalean gymnosperms were also common in the Aguas Frias succession (Figure 4), with Afropollis aff. jardinius (6.5% on average per sample), Afropollis jardinius (4.4% on average per sample; Plate 1, figure 18) and Araucariaepollenites australis (2.4% on average per sample) being the most abundant species. Finally, the most abundant gnetalean species found in the succession were Elaterosporites klaszi (2.7% on average per sample; Plate 1, figure 5B).
3.4. Floristic comparisons

The Aguas Frias succession had more total species at a rarefied count of 250 grains per sample than the La Merced succession ($F_{1,16} = 12.31$, $p < 0.01$; Table 3 and Figure 6). Aguas Frias also had both a higher number of angiosperm species ($F_{1,16} = 43.31$, $p < 0.01$; Table 3 and Figure 7A) and a higher abundance of angiosperm pollen than La Merced ($F_{1,16} = 8.01$, $p < 0.01$; Table 3 and Figure 7B). There were no significant differences in richness and abundance of non-gnetalean gymnosperm species (richness: $F_{1,16} = 0.92$, $p > 0.05$; abundance: $F_{1,16} = 0.002$, $p > 0.05$; Table 3 and Figure 7). The abundance of spores was higher in La Merced ($F_{1,16} = 13.13$, $p < 0.01$; Table 3 and Figure 7B), whereas there was no significant difference in spore richness ($F_{1,16} = 3.93$, $p > 0.05$; Table 3 and Figure 7A). The species accumulation curves that show the Aguas Frias succession has a higher among-sample diversity, thus accumulating species faster as more samples are analysed, but neither of them reached a plateau, indicating that additional effort would be required to reach the maximum the diversity of both successions (Figure 8).

4. Discussion

4.1. Age of the successions

4.1.1. La Merced

The palynological content of the Lower Cretaceous La Merced succession indicates a pre-Aptian age. We used publications from Brazil as baselines for assigning ages to the succession, as there is no published biostratigraphic zonation for the Early Cretaceous of Peru. The most complete Lower Cretaceous biochro-nostratigraphic work in tropical latitudes of South America was conducted in Brazil (Regali et al. 1974; Regali & Viana 1989). The Berriasian to Barremian interval comprises a single biostratigraphic superzone in the tropical latitudes of South America, the Cedridites? sp. superzone, defined by the appearance of Dicheiropollis etruscus and Cedridites? sp. (Regali & Viana 1989; Regali et al. 1974), which are not present in our samples. The lower Cedridites? sp. superzone has three zones; from oldest to youngest: Alisporites? sp. 1, Leptolepidites major and Vitresporites pallidus. The disappearance of Alisporites? sp. 1 defines the upper boundary of the Alisporites? sp. 1 zone. The disappearance of Leptolepidites major defines the upper boundary of the L. major zone, while the disappearance of V. pallidus defines the upper boundary of the V. pallidus zone (Regali et al. 1974; Regali & Viana 1989). L. major and V. pallidus co-occur in the La Merced succession, suggesting that its age corresponds to the Alisporites? sp. 1 to L. major zones. Both zones correspond to the Rio da Serra Brazilian chronology that has been calibrated as Berriasian to Hauterivian (Regali & Viana 1989).

Typical tropical latitude palynofloras of Early Cretaceous pre-Aptian age in northern Gondwana (the Dicheiropollis etruscus/Afropollis Province) are characterized by abundant Classopolis, as well as gymnospermous species like Araucariacites, Inaperturopollenites and Exesipollenites, ephedroid pollen grains, and low abundances of angiosperm pollen (Herngreen et al. 1996). The La Merced succession has both Araucariacites and Inaperturopollenites, but lacks Classopolis, which can account for up to 80% abundance in other tropical latitude successions of this age (Herngreen et al. 1996). As discussed below, the absence of this taxon in the La Merced succession could be related to climate.

4.1.2. Aguas Frias

We found the co-occurrence of several taxa that suggest an Albanian age for this succession, including Elaterosporites protensus that has its complete range within the Albanian (Regali et al. 1974), Afropolis jardinus that extends from the late Aptian to the early Cenomanian but is more commonly found within the Albanian (Regali et al. 1974), and Cretaceiporites polygonalis that extends from the early Albanian to Campanian (Regali et al. 1974; Regali & Viana 1989). Albanian palynofloras from tropical South

Plate 1. Selected palynomorphs from the La Merced and Aguas Frias successions. Each sample is identified by its sampling outcrop (CTA for Contamana and MER for La Merced) and a number (e.g., CTA 15-2), followed by the England Finder coordinate. Humidity indicators: Figure 1. Cybelosporites impanusus, CTA 18, R42/2. Figure 2. Cyathidites australis, CTA 7-2, F57. Figure 3. Cyathidites minor, CTA 18-2, X57. Figure 4. Ruffordia prostrata, CTA 15-2, F52. Figure 5. Todisporites minor, MER 7, M46/2. Aridity indicators: Figure 6. Classopolis classoides, CTA 17, X45/1. Figure 7. Ephedriopteris costaliferus, CTA 20-02, X53. Figure 8. Ephedriopteris sp. A. Henneguey 1968, CTA 19, X59/2. Figure 9. Ephedriopteris strigatus var minor, CTA 17, U49. Most common angiosperm pollen grains: Figure 10. Periheptisncolpites aff. giganteus, MER 12, U50/2. Figure 11. Psilotrichites tenuis, CTA 20, T58/1. Figure 12. Retinomonocolpites ‘colpomacularus’, MER 9-2, T64/1. Figure 13. Retinomonocolpites ‘definitus’, CTA 15-2, Q52/1. Figure 14. Retinomonocolpites maturhensis, CTA 15-2, U65/3. Most common gnetalean pollen grains: Figure 15. Alatisporites limai, CTA 17, S51/3. Figure 16 Eptesporites klazia, CTA 15-2, S47/4. Figure 17. Elaterosporites protensus, CTA 18-2, X53/1. Most common non-gnetalean gymnosperm pollen grains: Figure 18. Afropolis jardinus, CTA 17, V56. Figure 19. Callialasporites dambrietii, MER 7, S47. Scale bars = 20 μm.
America have been described from Peru (Brenner 1968), Brazil (Herngreen 1973; Herngreen 1974; Herngreen 1975) and Colombia (Mejia-Velasquez et al. 2012). In Africa, there are numerous sequences of this age, including in Egypt (Abdel-Kir-eem et al. 1996; Ibrahim 1996), Morocco (Bettar & Meon 2001), Libya (Batten & Uwins 1985), Ghana (Atta-Peters & Salami 2006) and Ivory Coast (Jardine & Magloire 1965). Typical Albian palynofloras in northern Gondwana, or the Elaterates Province, contain elater-bearing species (gnetales), common ephedroid pollen grains, Classopolis, Araucaria, high abundance and diversity of angiosperm pollen, and usually sparse spores (Herngreen et al. 1996). All these components are found in our Aguas Frias samples, except for scarcity of spores, which in contrast were abundant and diverse (Figures 2, 4 and 5b).
4.2. Change in floristic composition

We found 164 species of palynomorphs in the Aguas Frias and La Merced successions: 49 angiosperms, 25 gnetaleans, 20 non-gnetalean gymnosperms and 70 spores (Supplemental materials 2 and 3). The two successions had large floristic differences, with only 29 species (17% of the overall assemblage) in common. The Albian Aguas Frias succession had a higher number of species than the Berriasian–Hauterivian La Merced succession (35.6 vs. 20.7 sp. per sample on a 250 rarefied count per sample; Figures 6 and 8). This pattern has also been found in macrofloras and palynofloras of middle and high latitudes, where there is a gradual increase in the total number of plant species through the entire Cretaceous (Lidgard & Crane 1990). This increase is mostly due to the increasing diversity of both angiosperms and gneteas. In our analyses angiosperms show a significant increase in abundance (0.14% vs. 16.75% per sample; Table 3 and Figure 7) and richness (0.25 vs. 10.83 species on a 250 rarefied count per sample; Figure 7), as well as gneteas (richness 0 vs. 7.63 species, abundance 0% vs. 14.52%; Table 3 and Figure 7). These increases indicate a rapid diversification of both groups during the Early Cretaceous.

Angiosperms first appeared in the fossil record during the Hauterivian (Brenner 1974; Hughes & McDougall 1987), and soon after their appearance they started a rapid diversification (Wang et al. 2009; Moore et al. 2010). The increase in angiosperm abundance and diversity has also been recorded at middle and high latitudes (Crane & Lidgard 1989; Lupia et al. 1999), and by the Albian angiosperms were already an abundant and diverse component of palynofloras worldwide (Herngreen et al. 1996; Lupia et al. 1999). This rapid early Cretaceous diversification of angiosperms was paralleled by gneteas in tropical latitudes (Crane & Lidgard 1989). In contrast, the abundance and richness of non-gnetalean gymnosperms (e.g. araucarians and Cheirolepidaeae) did not change from the Berriasian–Hauterivian to the Albian in the tropical latitude successions analysed (richness 5.36 vs. 6.26 species, abundance 20.64% vs. 22.58%; Table 3 and Figure 7). This pattern is similar to that reported in mid and high latitudes of North America, where the abundance and diversity of non-gnetalean gymnosperms, especially conifers, remained stable through the Cretaceous (Lupia et al. 1999).

Spores decreased in relative abundance from the Berriasian–Hauterivian (79.22%) to the Albian (46.14%), although their species richness remained stable (15.12 vs. 10.88 species in a 250 rarefied count per sample; Table 3 and Figure 7). This apparent decrease in abundance could be a statistical artifact called ‘the closer effect’, i.e. as the abundances of both gneteas and angiosperms increased, the relative abundance of spores must decrease. Even with a decrease in abundance, our results demonstrate spores were still a very diverse and abundant group in the tropics during the Albian, even as angiosperms and gneteas were diversifying. It has been suggested that ferns also diversified during the Cretaceous, as new niches emerged as a consequence of the explosive angiosperm and gnetalean diversification (Schneider et al. 2004). Although we did not find evidence of a higher spore diversity to directly support this hypothesis of Cretaceous fern diversification, the fact that spores remained highly diverse in spite of their significant decrease in abundance could be an indication of high origination rates in the group.

4.3. Climate

We found higher abundance of humidity indicators than aridity indicators for both the La Merced and Aguas Frias successions (Table 2; Figures 2 and 3), indicating that a humid climate prevailed in northwestern South America during the Berriasian–Hauterivian and the Albian intervals. Most climatic reconstructions based on climate-sensitive sediments imply the prevalence of arid climate in most of western Gondwana during the pre-Aptian interval of the Early Cretaceous (Chumakov et al. 1995). However, palaeoclimatic reconstructions based on pollen and spores of northern Gondwana indicate that the Berriasian–Hauterivian interval was potentially more humid, as inferred from the predominance of spores and bisaccate pollen species (Herngreen et al. 1996). Results from our climatic analyses also suggest that the Berriasian to Hauterivian La Merced succession had a predominantly humid climate, supporting the climatic interpretations made by Herngreen et al. (1996).

Besides palynology, the presence of humid areas during this time interval in the tropical latitudes of western Gondwana is also supported by other sources of evidence. The climatic interpretations of aridity come from the wide distribution of evaporites and calcrites in northern South America and northern Africa (Figure 9; modified from Chumakov et al. 1995; Scotese et al. 1999). However, the presence of several coal deposits in northwestern South America and northern Africa (Scotese et al. 1999) indicates a humid climate, as do climate models, which predict that tropical areas were only seasonally dry but humid during the summer (Rees et al. 2000). These inferences coincide with our findings of humid climate in the coastal area of northwest South America during the Berriasian to Hauterivian interval.
The Albian stage has been reconstructed as semi-arid or arid based on pollen and spores: the scarcity of spores and bisaccate pollen grains, and the high abundance of the arid-related ephedroid pollen grains and \textit{Classopollis} (Herngreen et al. 1996). In contrast, the Albian Aguas Frias succession is dominated by spores, which suggests a humid climate (Figure 3). Other palynological studies in the tropical latitudes of South America have also led to inferences of humid climates during the Albian.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure9}
\caption{Palaeogeographic location of the La Merced succession in Peru (145 Ma). Location of climate-sensitive sediments in western Gondwana from Scotese et al. (1999) and Chumakov et al. (1995). Palaeomap created using Advanced Plate Tectonic Reconstruction Service (ODSN). Short dashed lines indicate the climatic interpretation of humidity by Scotese et al. (1999). Poleward-shaded areas are interpreted as mid-latitude warm humid belts, highlighted continental areas are interpreted as evaporite belts and remaining continental areas are interpreted as arid by Chumakov et al. (1995).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10}
\caption{Palaeogeographic location of the Aguas Frias succession in Peru (110 Ma). Location of climate-sensitive sediments in western Gondwana from Chumakov et al. (1995). Palaeomap created using Advanced Plate Tectonic Reconstruction Service (ODSN). Tropical-shaded area between dashed lines is interpreted as a humid belt, highlighted continental areas are interpreted as evaporite belts and remaining continental areas are interpreted as arid by Chumakov et al. (1995). See legend on Figure 9.}
\end{figure}
stage, indicating that the southwestern margin of South America was humid during that time interval (Herngreen & Duenas Jimenez 1990; Mejia-Velasquez et al. 2012). Other sources of evidence also support the presence of humid climate in the tropical latitudes of western South America during the Albian. First, distributions of climate-sensitive sediments and fossils suggest the presence of a small humid tropical latitude belt during the Albian (Chumakov et al. 1995; Figure 10; modified from Chumakov et al. 1995). Additional lithological evidence supporting this hypothesis, not included in Chumakov et al. (1995), includes the numerous coal layers found in the Albian deposits from the Caballos Formation in Colombia (Florez & Carrillo 1993). Second, the isotopic composition of palaeosols from the Albian Caballos Formation in Colombia also indicates the presence of humid conditions (Suarez et al. 2010). Finally, climate models for the mid Cretaceous show increasing humidity and an enhanced hydrological cycle (Sellwood & Valdes 2006) and predict the presence of at least seasonal humidity at tropical latitudes for the middle Cretaceous (Fluteau et al. 2007). All these sources of evidence cast doubt on the existence of a continuous tropical arid belt during the greenhouse event of the middle Cretaceous, as suggested by palynological interpretations (Herngreen et al. 1996), indicating instead humid conditions in several tropical latitude regions.

The presence of humid climates in northwestern South America during the Early Cretaceous could be a consequence of a ‘supercontinent effect’, when the coastal areas of Gondwana were probably more humid than areas in its vast interior. On large continents, like Gondwana, moisture cannot be easily carried from the coast, creating interior deserts at any latitude (Scotese et al. 1999). Under this scenario, tropical areas of South America near the Pacific Ocean would have been more humid than areas in the interior of Gondwana.

In conclusion, the floristic and climate reconstructions presented here show an increase of angiosperm abundance and diversity from the Berriasian–Hauterivian to the Albian in tropical latitudes, and demonstrate the presence of humid climates in northwestern South America during the Berriasian–Hauterivian and Albian ages.

Acknowledgements

Financial support for this project came from the Smithsonian Tropical Research Institute, the Anders Foundation, 1923 Fund and Gregory D. and Jennifer Walston Johnson, and a Geological Society of America (GSA) research grant. Thanks to Pierre-Olivier Antoine and his team in Montpellier for field support. The authors thank Dr Mohamed Zobaa and two anonymous reviewers for comments and suggestions. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US government.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Smithsonian Tropical Research Institute; Andersen Corporate Foundation; 1923 Fund; Gregory D. and Jennifer Walston Johnson; Geological Society of America [grant number 9209-03].

Notes on contributors

Paula J. Mejia-Velasquez is an adjunct professor at the University of Hawaii – Leeward Community College. She received her MS and PhD from the University of Florida, and her BS in biology from the Universidad de Antioquia (Colombia). As part of her doctoral research she reconstructed the palynofloras of different tropical successions of Lower Cretaceous age from South America and determined the climatic implications derived from the floristic composition. Her research interests are tropical biostратigraphy, early evolution of flowering plants in the tropics and climatic reconstruction using palynofloras.

Steven Manchester is Curator of Paleobotany at the Florida Museum of Natural History, University of Florida. His research examines the systematics, biogeography and palaeobotanical record of various extant angiosperm families employing data from fossil flowers, fruits, seeds, leaves, woods and pollen.

Carlos A. Jaramillo is a staff scientist with the Smithsonian Tropical Research Institute in Panama. His research investigates the causes, patterns and processes of tropical biodiversity at diverse scales in time and space. He is also interested in Mesozoic and Cenozoic biostратigraphy of low latitudes, developing methods for high-resolution biostратigraphy and the palaeobiogeography of the Tethys.

Lúiz Quiroz is a PhD candidate at the University of Saskatchewan, Canada. His research deals with the field of ichnology and sedimentology, and their relations with stratigraphy, palaeoecology and palaeoclimate. He primarily focuses on understanding the dynamics of shallow- to marginal-marine systems in both modern and ancient environments, but with particular emphasis in tropical America.

Lucas Fortini is a quantitative ecologist with expertise in population and community ecology. His research interests are currently focused on determining the impacts of climate change on Pacific Island ecosystems, but he also has significant research experience in tropical forest ecology and management.

References

Regali CR, Viana C. 1989. Late Jurassic-Early Cretaceous in Brazilian sedimentary basins: correlation with the international standard scale. Brasil: Petroleo Brasileiro S.A.

