ORIGINAL ARTICLE Joseph A. M. Holtum · Klaus Winter # Photosynthetic CO_2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO_2 Received: 24 January 2003 / Accepted: 7 July 2003 / Published online: 6 August 2003 © Springer-Verlag 2003 Abstract Do short-term fluctuations in CO₂ concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 μ l CO₂ l⁻¹, net CO₂ uptake rates in shoots or leaves of seedlings of two tropical C₃ tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 μ l CO₂ l⁻¹ and mean of 600 μ l CO₂ l⁻¹, the stimulation in net CO₂ uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO₂ stimulation in photosynthesis associated with a change in exposure from 370 to 600 μ l CO $_2$ l $^{-1}$ was reduced by a third in both species. Similar reductions in CO₂-stimulated net CO₂ uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 μ l CO₂ l⁻¹ to 600 μ l CO₂ l⁻¹. The potential implications of the observations on CO₂ oscillations and dark respiration are discussed in the context of free-air CO₂ enrichment (FACE) systems in which short-term fluctuations of CO₂ concentration are a common feature. **Keywords** CO_2 oscillations · Elevated CO_2 concentrations · Free-air CO_2 enrichment (FACE) systems · Photosynthesis · Tropical trees Owing to an unfortunate misunderstanding, the uncorrected version of this paper was published. J. A. M. Holtum · K. Winter (🖾) Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Ancon, Republic of Panama E-mail: winterk@tivoli.si.edu Fax: +507-2128148 Present address: J. A. M. Holtum Tropical Plant Sciences, James Cook University, Townsville, Queensland 4811, Australia **Abbreviations** FACE: free-air CO₂ enrichment · IRGA: infra-red gas analyser · Rubisco: ribulose 1,5-bis-phosphate carboxylase/oxygenase #### Introduction Free-air carbon dioxide enrichment (FACE) facilities are presently considered the best method for manipulating atmospheric CO₂ concentrations around plants growing under otherwise natural field conditions (Hendrey et al. 1999; McLeod and Long 1999). Such systems have become an integral tool for studying, in the context of global climate change, the effects of increasing CO₂ concentrations on the growth and development of uncontained plants in situ (Miglietta et al. 2001). All FACE systems impose two CO_2 treatments — an increase in the average CO_2 concentration and a fluctuating, often oscillating, CO_2 treatment. The amplitude and frequency of the variations in CO_2 concentration common in FACE systems are usually much greater than would ever be experienced under natural conditions, even near tropical forest floors (Holtum and Winter 2001). Changes in CO_2 partial pressures of $200-300~\mu l$ $CO_2~l^{-1}$ over periods of 5-20~s are not uncommon in FACE systems but fluctuations of $300~\mu l$ $CO_2~l^{-1}$ for periods of 30~s or longer are rare (Evans and Hendrey 1992). Such estimates of fluctuations may be underestimates as long sampling lines may dampen the signals and some fluctuations may be faster than monitor response times. The CO_2 concentrations fluctuate because the CO_2 injection mechanisms overshoot or undershoot as they continually adjust to counteract variations in wind speed and direction. For example, CO_2 concentrations based on over one million 1-s measurements (each an integral of 3 s) over a 2-year period at the University of Arizona's Maricopa Agricultural Center FACE facility were more than 110 μ l l⁻¹ higher or lower than the set target of 550 μ l CO_2 l⁻¹ for 9.3% of the time (Nagy et al. 1994). For 23.9% of the time they differed by between \pm 55 and \pm 110 μ l l⁻¹. When averaged over 1-min intervals, a common measure of FACE performance, the CO₂ concentration was within \pm 55 μ l l⁻¹ of the set point for 95% of the time and between \pm 55 and \pm 110 μ l l⁻¹ for 6.7% of the time. The CO₂ fluctuations induced in Brookhaven-type FACE facilities that inject diluted CO₂ (e.g. Nagy et al. 1994; Hendrey et al. 1999; Jordan et al. 1999) and in comparably sized facilities that inject pure CO₂ (Miglietta et al. 2001; Okada et al. 2001; Pepin and Körner 2002) are broadly similar although FACE systems enclosing trees and natural communities tend to exhibit greater fluctuations than those enclosing crops. Open-top systems can exhibit comparable fluctuations (Cardon et al. 1995; Winter et al. 2000). Clearly, FACE systems do not mimic atmospheric CO₂ conditions over time-scales of a few minutes or less (with the exception of natural CO₂ vents; Koch 1993; Miglietta et al. 1993). Although there is extensive literature on the effects of constant high CO₂ concentrations on plant growth and development, there have been few studies that compare the effects on net CO₂ uptake and plant performance of rapidly oscillating versus constant CO₂ concentrations. Do short-term oscillations in CO₂ concentration affect photosynthetic CO₂ exchange in the shorter term and plant growth in the longer term? Although it is commonly expressed that such short-term variations are unimportant in situ (Hendrey et al. 1997, 1999), particularly in tree species for which the responses of stomata are believed to be slower than in crop plants (Saxe et al. 1998), short-term CO₂ oscillations have been reported to perturb photosynthesis in leaves of the C₃ species Gossypium hirsutum L. (Evans and Hendrey 1992), Triticum aestivum L. (Hendrey et al. 1997) and Phaseolus vulgaris L. (Cardon et al. 1994, 1995) and in the C₄ species Zea mays L. (Cardon et al. 1994, 1995). However, in none of the above-mentioned examples was CO₂ uptake studied during oscillations of less than 1 min that are characteristic of FACE experiments. Gossypium leaf tissue exposed to 1-min oscillations of between 360 and 1,090 μ l CO₂ l⁻¹ (mean of 700 μ l l⁻¹) exhibited a mean rate of uptake of 14CO2 that did not differ from that of leaf tissue which had been exposed to a constant concentration of 700 µl l⁻¹ (Evans and Hendrey 1992). However, oscillations of 2 min and longer were associated with an increase in net CO₂ gain, reaching 27% when the oscillation was extended to 10 min. It was speculated that the mechanism responsible for the increase was related to postulated changes from ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited to inorganic phosphate- and triose phosphate-limited photosynthesis. Furthermore, it was suggested by extrapolation that oscillations of less than 1 min duration would have little effect on the rate of long-term carbon gain. Photosynthetic CO_2 uptake in wheat was inferred from measurements of instantaneous photosystem II fluorescence (F_t) during oscillations with an amplitude of 225 μ l CO_2 l⁻¹ around a mean of 575 μ l CO_2 l⁻¹ and half-cycles between 0.1 and 64 s (Hendrey et al. 1997). Oscillations in chlorophyll fluorescence were observed for half-cycles greater than 2 s and reductions in electron transport rate (J) were observed for half-cycles of 30 s and greater. It was concluded that at least 180 s were required before F_t signals achieved a new steady state, and that a substantial decrease in CO_2 uptake would occur only if the duration of a CO_2 oscillation was greater than 1 min, or if the oscillation was not symmetric around the mean. In Z. mays and P. vulgaris subjected to CO₂ oscillations of 100–160 μl CO₂ l⁻¹ for between 2 and 20 min, stomatal conductance shifted away from the steady-state level observed under the median CO₂ concentration of 333–340 μl CO₂ l⁻¹ (Cardon et al. 1994, 1995). The extent and direction of the shifts, which depended upon the species and the oscillation frequency, were related to species-specific differences in the kinetics of stomatal movement and photosynthetic characteristics. The non-steady-state conditions changed short-term water-use efficiencies in both species although photosynthetic rates remained fairly constant. In order to dispel uncertainty on the effects of short-term fluctuations in CO_2 concentrations on carbon gain we have tested whether the responses of net CO_2 exchange by seedlings or leaves of two tropical tree species, teak (*Tectona grandis* L. f.) and *Pseudobombax septenatum* (Jacq.) Dug., to an increase in CO_2 concentration from ca. 370 to 600 μ l CO_2 l⁻¹ are affected by symmetric oscillations around 600 μ l CO_2 l⁻¹, with half-cycles of considerably less than 1 min. Exposure to enhanced and fluctuating CO₂ are not the only treatments imposed by FACE systems. A number of FACE systems impose a third CO₂ treatment: the CO₂ injectors are turned off during the dark (Pepin and Körner 2002). Apart from reducing the use and thus the cost of CO₂, switching off the CO₂ supply avoids the technical problem of controlling and maintaining constant and relatively uniform CO₂ concentrations when wind speeds are low, and reduces blower-induced canopy temperature increases (Pinter et al. 2000). There is uncertainty as to whether plant performance and development is affected by increased concentrations of CO₂ in the dark, a period when photosynthesis is not taking place and ambient concentrations of CO₂ tend to be higher. Although dark respiration by C₃ and C₄ grasses, C₃ herbaceous species and C₃ trees has been reported to be inhibited under enhanced CO₂ concentrations (e.g. Drake et al. 1999), there are many reports of little or no effect of enhanced CO₂ concentrations on dark respiration (e.g. Amthor et al. 2001; Hamilton et al. 2001; Tjoelker et al. 1999, 2001). Recently it has been suggested that some reports on the effects of high CO₂ on dark respiration may be artefacts caused by the leakage of CO₂ from plant gas-exchange chambers through gaskets or through contiguous pores which connect regions of plant mesophyll that transcend the boundaries of the chambers (Jahnke 2001; Jahnke and Krewitt 2002; Pons and Welschen 2002). In order to quantify dark CO_2 efflux in T. grandis and to circumvent problems associated with the leakage of respiratory CO_2 through leaves or across gaskets we determined the effects of an increase in CO_2 concentration from 370 to 600 μ l CO_2 l⁻¹ on dark respiration by whole intact shoots of teak seedlings that were fully enclosed in a gas-exchange chamber. #### **Materials and methods** #### Plant material and growth conditions Seeds of *Tectona grandis* L. f. (Verbenaceae) and *Pseudobombax septenatum* (Jacq.) Dug. (Bombacaceae) were collected locally and germinated in potting soil in a screenhouse on the roof of the Tupper Building, Smithsonian Tropical Research Institute, Panama City, Republic of Panama. After 2–3 weeks, seedlings were transplanted into half-strength Johnson's solution (Winter 1973) and grown under a 12 h light, 26 °C/12 h dark, 23 °C cycle in an environmental growth chamber (GCT-8; GEC, Chagrin Falls OH, USA) equipped with eight fluorescent light tubes (Sylvania 115 W F48T12/CW/VHO). ### Gas exchange system Net CO₂ exchange was measured for the shoots of whole plants in a through-flow gas exchange system (Walz, Effeltrich, Germany). Oscillating CO₂ concentrations were generated by mixing two air streams, one containing CO₂ and the other containing CO₂-free air. The CO₂-containing air stream was generated by mixing pure CO₂ and CO₂-free air in a custom-made mixing unit (Walz GMA-3). The CO₂-free stream was generated by passing air through soda-lime. The dew-points of the two air streams were set by electronically controlled cold-traps (Walz KF-24/6BM and KF-18/2) before passage through two mass-flow controlled pumps (Walz LD-5R and LD-10R). Air streams with oscillating CO₂ concentrations were generated by alternating the supply from each pump at appropriate intervals using a timer-controlled solenoid gas switch (Walz TG 101A and Walz GUS-8). Air was pumped through a Plexiglas cuvette with a volume of 1.21 1 (11 cm \times 11 cm \times 10 cm). Mixing of the atmosphere inside the cuvette was facilitated by a 4-cm-diameter CPU cooler fan (12 V, 0.08 A). The airstream leaving the cuvette was dehumidified in a cold-trap at 2 °C (Walz KF-18/2) and the CO₂ concentration determined by an infra-red gas analyser (IRGA; LI-6252; LI-COR, Lincoln, NE, USA) previously calibrated using CO2 gas standard (Scott Speciality Gases, Plumsteadville PA, USA) and a set of three gas-mixing pumps (Wösthoff, Bochum, Germany). Gas flow rates were 2.200, 2.128, 1.100 and 1.032 1 min⁻¹ for experiments at constant CO₂ in the light, for 20-s oscillations, for 40-s oscillations and for experiments at constant CO₂ during the dark, respectively. Flow rates were verified using a water-volume displacement method and a digital soap-bubble flow meter (model 650; Humonics Inc, Rancho Cordova CA, USA). In an experiment designed to test the dilution of oscillation signals in the airstream between the plant chamber and the IRGA we compared maximum and minimum CO_2 concentrations emanating from the complete gas-exchange system with the signals emanating from the system when the post-chamber pre-IRGA cold-trap had been removed and the IRGA was directly connected to the outlet of the gas-exchange chamber. The dilution of the extremes of the oscillations averaged 7 μ l l⁻¹. #### Measurements of net CO₂ exchange Intact seedlings of ca. 6 cm height, growing in 150-ml pots containing half-strength Johnson's solution (Winter 1973) were inserted into a gas-exchange cuvette located in the temperature- controlled growth chamber in which the seedlings had been maintained. For *T. grandis*, the entire shoot was sealed in the cuvette (total leaf area of 44–77 cm²), whereas for *P. septenatum* one leaf was enclosed (area of 29–33 cm²). Plant material in the cuvette was kept under a regime of 12 h light, 29 °C/12 h dark, 25 °C. The dew-point of the air entering the gas-exchange cuvette was 18 °C. The light intensity at the uppermost leaf inside the cuvette was 280 μ mol m⁻² s⁻¹ for the experiments with *T. grandis* and 410 μ mol m⁻² s⁻¹ for *P. septenatum*. Plant material was incubated at 370 μ l CO₂ l⁻¹ in the gas-exchange cuvette overnight. Experiments were initiated about 2 h following the onset of the light period. After determining net CO₂ exchange rate at a constant 370 μ l CO₂ l⁻¹, the CO₂ concentration was increased to 600 μ l CO₂ l⁻¹ and net CO₂ exchange was recorded following attainment of steady-state photosynthesis. For the experiments with oscillating CO₂ concentrations, gas exchange was recorded for 10 min in the presence of the plant tissue and then for 10 min in the absence of the plant tissue. Estimations of net CO₂ exchange did not alter when the sequence of collecting sample and control data was reversed. The output from the gas analyser was sampled electronically at 1-s intervals. CO₂ uptake by the tissue was calculated from the difference in the integrated CO₂ concentrations and expressed as a mean rate per second on a leaf-area basis. To obtain CO_2 -response curves of net CO_2 exchange in the light, CO_2 concentrations were increased in three steps from 370 to 850 μ l CO_2 l⁻¹, decreased in six steps to 30 μ l CO_2 l⁻¹ and then increased in five steps to 600 μ l CO_2 l⁻¹. Each CO_2 concentration was maintained until a steady-state rate of photosynthesis was attained. Dark respiration rates were determined during the normal dark period. Measurements were taken at 370 μ l CO₂ l⁻¹, at 600 μ l CO₂ l⁻¹ and subsequently at 370 μ l CO₂ l⁻¹. #### Results The rate of net CO_2 uptake in the light by T. grandis was CO_2 -dependent (Fig. 1). When exposed to a constant concentration of 600 μ l CO_2 l⁻¹, the rate of net CO_2 uptake was $28 \pm 3\%$ (mean \pm SE) greater than at a constant 370 μ l l⁻¹ ($P \le 0.01$, paired t-test; columns 3 and 4 in Table 1). This CO_2 -dependent increase at **Fig. 1** CO₂—response curve of a whole shoot of a *Tectona grandis* seedling exposed to constant concentrations of CO₂ (*open circles*) or to oscillations in CO₂ concentration with half-cycles of 20 s (*closed circle*). Representative of four experiments on three plants **Table 1** Net CO_2 uptake by shoots of *Tectona grandis* seedlings at constant and oscillating CO_2 concentrations. Percentage reduction in CO_2 -stimulated CO_2 uptake was calculated as $[(D-E)/(D-C)\times100]$, where the capital letters indicate values in the columns from left to right. The means of rates for 20-s and 40-s oscillations did not differ from each other (paired*t*-test), but differed from rates at constant 370 and 600 μ l CO₂ l⁻¹ ($P \le 0.01$, paired*t*-test). The rates at constant 370 and 600 μ l CO₂ l⁻¹ differed ($P \le 0.01$, paired *t*-test) | Plant No. | Expt. No. | Net CO_2 uptake (μ mol m ⁻² s ⁻¹) | | | | | Reduction in | | |-----------|-----------|---|--|--|------|--|--------------|------| | | | Constant
370 μl CO ₂ l ⁻¹ | Constant
600 μl CO ₂ l ⁻¹ | Oscillating 600 µl CO ₂ l ⁻¹ | | CO ₂ -stimulated rate under oscillating CO ₂ (%) | | | | | | | | | | | | 20 s | | | | | | 1 | 1 | 4.98 | 6.90 | 6.13 | | 2 | _ | 6.46 | 5.77 | | _ | _ | _ | | | 3 | _ | 6.26 | 5.81 | | _ | _ | _ | | | 4 | 5.01 | 7.35 | 6.75 | | _ | 25.6 | _ | | | 2 | 1 | 6.56 | 7.96 | 7.37 | _ | 42.1 | _ | | | | 2 | 7.26 | 7.77 | 7.64 | _ | 25.5 | _ | | | | 3 | 7.19 | 8.68 | 7.59 | _ | 73.2 | _ | | | | 4 | 7.61 | 9.32 | 8.37 | 8.36 | 55.6 | 56.1 | | | | 5 | 7.35 | 9.07 | 8.64 | 8.66 | 25.0 | 23.8 | | | 3 | 1 | 4.99 | 6.58 | 6.20 | 6.08 | 23.9 | 31.4 | | | | 2 | 4.74 | 6.67 | 6.58 | 5.96 | 5.2 | 36.8 | | | | 3 | 6.05 | 7.71 | 7.04 | 7.44 | 40.4 | 16.3 | | | | 4 | 5.90 | 7.78 | 7.13 | 7.08 | 34.6 | 37.2 | | 600 μ l CO₂ I⁻¹ was reduced to $19 \pm 3\%$ (SE; $P \le 0.01$, paired t-test) when the tissue was exposed to symmetric oscillations with a mean of 600 μ l CO₂ I⁻¹, a half-cycle of 20 s and an amplitude of ca. 170 μ l CO₂ I⁻¹ (Fig. 2, Table 1). Similarly, in the subset of plants exposed to 40-s oscillations, the $30 \pm 3\%$ (SE; $P \le 0.01$, paired t-test) increase of net CO₂ uptake was reduced to $20 \pm 2\%$ (SE; $P \le 0.01$, paired t-test). That is, in every experiment performed with T. T grandis under oscillating CO₂ **Fig. 2** CO₂ concentrations experienced by the shoot of the *T. grandis* seedling illustrated in Fig. 1 during 10 complete oscillations each with a half-cycle of 20 s. CO₂ concentration was sampled every 1 s. The mean CO₂ concentration during the experiment depicted was $598.9\pm0.2~\mu l$ CO₂ l^{-1} , the mean of the maxima was $766.0\pm0.2~\mu l$ CO₂ l^{-1} and the mean of the minima was $433.5\pm0.1~\mu l$ CO₂ l^{-1} (values \pm SE). Similar regular kinetics were observed during experiments with oscillations of 40 s half-cycle conditions of less than 1 min, net CO_2 uptake diminished. The reduction of the stimulation of photosynthetic CO_2 uptake associated with the increase from 370 to 600 μ l CO_2 l⁻¹ was 36±5% (SE) in the presence of oscillations with a 20-s half-cycle and 34±6% (SE) in the presence of oscillations with a 40-s half-cycle (Table 1). Similar observations were made for photosynthetic CO_2 uptake by P. septenatum (Table 2, Fig. 3). The stimulation in net CO_2 exchange in response to an increase in the CO_2 concentration from a constant 370 μ l CO_2 l⁻¹ to a constant 600 μ l CO_2 l⁻¹ was $52 \pm 2\%$ (SE; $P \le 0.01$, paired t-test). This increase was reduced to $36 \pm 2\%$ (SE; $P \le 0.01$, paired t-test) when the tissue was exposed to 20-s oscillations, i.e. reduction of the stimulation of CO_2 uptake was $31 \pm 3\%$ (SE) in the presence of 20-s oscillations (Table 2). For shoots of *T. grandis* the rates of respiratory net CO_2 loss during the dark were examined at 25 °C at a constant 370 and a constant 600 μ l CO_2 l⁻¹ (Table 3). The rate of net CO_2 production in the presence of 600 μ l CO_2 l⁻¹ averaged 4.8 \pm 1.3% (SE) less than the average of the rates at 370 μ l CO_2 l⁻¹. The differences were significant at a level of $P \le 0.01$ (paired *t*-test). ## **Discussion** The potential for short-term fluctuations in CO₂ concentration, typical of FACE systems, to alter photosynthetic carbon gain from that observed under constant CO₂ concentrations has been commented upon a number of times (Evans and Hendrey 1992; Cardon et al. 1994, 1995; Nagy et al. 1994; Hendrey et al. 1997; McLeod and Long 1999; Pepin and Körner 2002). Rates of net CO₂ exchange under rapidly fluctuating CO₂ **Table 2** Net CO₂ uptake by leaves of *Pseudobombax septenatum* seedlings at constant and oscillating concentrations of CO₂. Percentage reduction in CO₂-stimulated CO₂ uptake was calculated as [(D-E)/(D-C)×100], where the capital letters indicate values in table columns from left to right. The means of the rates at constant 370, constant 600 μ l CO₂ l⁻¹ and for 20-s oscillations differed from each other ($P \le 0.01$, paired *t*-test) | Plant No. | Expt. No. | Net CO ₂ uptake (μmol m ⁻² s ⁻¹) | | | Reduction in CO ₂ -stimulated | |-----------|-----------|--|--|---|---| | | | Constant
370 μl CO ₂ l ⁻¹ | Constant
600 µl CO ₂ l ⁻¹ | Oscillating
600 µl CO ₂ l ⁻¹ | rate under oscillating CO ₂ (%) 20 s | | 1 | 1 2 | 8.44
7.21 | 12.76
10.70 | 10.89
9.77 | 43.3
26.6 | | 2 | 1 | 6.11 | 9.53 | 8.47 | 31.0 | | 3 | 1 | 7.00 | 10.86 | 9.99 | 22.5 | | 4 | 1 2 | 5.66
7.03 | 8.36
10.93 | 7.35
10.02 | 37.4
23.3 | **Fig. 3** CO₂–response curve of a leaf of a *Pseudobombax septenatum* seedling exposed to constant concentrations of CO₂ (*open circles*) or to oscillations in CO₂ concentration with half-cycles of 20 s (*closed circle*). The mean CO₂ concentration during the oscillation experiment depicted was $599 \pm 2 \, \mu l$ CO₂ l^{-1} , the mean of the maxima was $775 \pm 2 \, \mu l$ CO₂ l^{-1} and the mean of the minima was $440 \pm 3 \, \mu l$ CO₂ l^{-1} (values \pm SE) concentrations have not been measured in real time because of the technical difficulty of accurately estimating the differences between the rapidly changing CO_2 concentrations in the reference and sample airstreams. We circumvented this problem by separating in time the measurements of the reference and sample airstreams and integrated the rapidly changing CO_2 concentrations in both airstreams over a number of oscillations (10 min). Mean rates of net CO_2 exchange could thus be calculated, and treatments at oscillating and constant CO_2 concentrations could be compared. In both T. grandis and P. septenatum, rapid oscillations of CO_2 at frequencies and amplitudes commonly experienced by vegetation inside FACE systems consistently reduced by about a third the increase in net carbon gain associated with an increase in CO_2 concentration from 370 to 600 μ l CO_2 l⁻¹ (Tables 1, 2). Oscillations in atmospheric CO_2 should only influence photosynthetic rate in C_3 plants if the concentration of dissolved CO_2 at the site of the Rubisco is altered and if the activity of the carboxylase is limited by CO_2 at some point during the **Table 3** Net CO₂ production by shoots of five seedlings of *Tectona grandis* during the dark. Plants were sequentially exposed to 370, 600 and 370 μl CO₂ l⁻¹. The rate of net CO₂ production in the presence of 600 μl CO₂ l⁻¹ averaged 4.8 ± 1.3% (SE) less than the average of the rates at 370 μl CO₂ l⁻¹. The differences were significant at a level of $P \le 0.01$ (paired *t*-test) | Plant No. | Net CO ₂ production (μmol m ⁻² s ⁻¹) | | | | | | |-----------|--|--|--|--|--|--| | | 370 μl CO ₂ l ⁻¹ | 600 μl CO ₂ l ⁻¹ | 370 μl CO ₂ l ⁻¹ | | | | | 1 | 0.695 | 0.685 | 0.720 | | | | | 2 | 0.805 | 0.785 | 0.850 | | | | | 3 | 0.740 | 0.715 | 0.740 | | | | | 4 | 0.740 | 0.690 | 0.730 | | | | | 5 | 0.825 | 0.780 | 0.840 | | | | oscillation. Change in the concentration of CO_2 at the site of Rubisco should reflect the amplitude and frequency of oscillation, and the rate at which carbon diffuses from the atmosphere to the chloroplast. The oscillations will be dampened as CO_2 traverses the boundary layer, passes through the stomate into the sub-stomatal cavity, dissolves in the cell milieu and diffuses to the chloroplast. Clearly, the photosynthetic CO₂-assimilating apparatus in T. grandis and P. septenatum can respond to extremely rapid changes in external CO₂ concentration. Analogous rapid responses have been reported in wheat for measurements of fluorescence under non-photorespiratory conditions (Hendrey et al. 1997). Chlorophyll fluorescence yield (F_t) in wheat leaves responded to half-cycles as short as 2 s when exposed to oscillations of amplitude 225 μ l CO₂ l⁻¹ around a mean of 575 μ l CO₂ l⁻¹, and electron transport through photosystem II (J) was reduced by about 10% when exposed to 30-s half-cycles and 20% when exposed to half-cycles of 60 s or greater oscillating around a mean of 650 μ l CO₂ l⁻¹ with an amplitude of 215 μ l CO₂ l⁻¹. A model has been proposed to explain the decrease in photosynthetic net carbon gain in the presence of oscillating CO₂ concentrations (see Fig. 1 in Hendrey et al. 1997). The model assumes that the concentrations of CO₂ within the oscillating range fall within the partially saturated portion of the photosynthetic CO₂–response curve (see Fig. 1), and that during oscillations the leaf tissue is exposed to the maximum and minimum oscillatory concentrations of CO_2 for a duration sufficient to permit steady-state photosynthesis to occur, i.e. the oscillations are rectangular in shape. Under such conditions the mean of the two extreme steady-state rates of photosynthesis will lie below the curve. Our observations with T. grandis and P. septenatum are consistent with the model in that net carbon gain under short-term oscillations fell below the curve (Figs. 1, 3). However, the situation is more complex because in our experiments, which were designed to emulate FACE conditions, the external CO_2 concentration changed continuously, never reaching a steady state. We have not examined the effects of rapid oscillations on stomatal aperture, a response that can indirectly affect photosynthetic carbon gain. Cardon et al. (1994, 1995) demonstrated in *Zea mays* and *Phaseolus vulgaris* that the average stomatal conductance during 3- to 20-min oscillations with medians of 333–340 µl CO₂ l⁻¹ and amplitudes of 100–160 µl CO₂ l⁻¹ could be driven far from the steady-state condition observed at the median CO₂ concentration. Both the extent and the direction of the departure from the steady state was dependent upon species-specific asymmetries in stomatal opening and closing kinetics as well as the frequency and amplitude of oscillations in CO₂. A small but consistent reduction of 4.8% in respiratory carbon loss was observed at constant 600 µl CO₂ l⁻¹ in comparison to that observed at a constant 370 µl CO₂ l⁻¹. It is unlikely that the reduction in carbon loss is the result of leakage of CO₂ from tissues reported by Jahnke and Krewitt (2002) and Pons and Welschen (2002) as the entire shoot of each *T. grandis* plant was enclosed in the gas-exchange chamber and the stem was tightly sealed with the non-porous synthetic rubber sealant Terostat VII (Henkel-Teroson, Heidelberg, Germany), rather than a semi-porous gasket. Similarly, one cannot ascribe the small differences in respiratory loss to changes in the water vapour content of the airstream, which was dehumidified in an electronically controlled water vapour trap at 2 °C prior to IRGA analysis. The decrease in the rate of respiratory carbon loss from the shoots from T. grandis, which was measured during the normal dark period of the plants at 25 °C, was about 2-fold that reported for 12 C₃ and C₄ grassland species (Tjoelker et al. 2001), 35-70% of that observed for sweetgum, Liquidambar styraciflua (Hamilton et al. 2001), and about one-third of that reported by Amthor (1997) who analysed the data for 36 species in 45 studies. The decrease in respiratory CO₂ loss in T. grandis is small enough to be accounted for by direct effects of CO₂ on mitochondrial enzymes (Drake et al. 1999). Respiratory CO₂ loss at night may be reduced by phosphoenolpyruvate carboxylase (PEPC) as is the case for weak crassulacean acid metabolism (CAM) plants (Holtum and Winter 1999) but in non-CAM plants, doubling the ambient CO₂ concentration is unlikely to affect the rates of net CO₂ loss in the dark via PEPC (Melzer and O'Leary 1987; Amthor 1997). The calculated increase in 24-h carbon gain associated with the change from 370 to 600 μ l CO₂ l⁻¹ was 29.8% when 600 μ l CO₂ l⁻¹ was only provided during the daylight hours, and 30.4% when 600 μ l CO₂ l⁻¹ was also provided at night. In the context of FACE experiments, this reduction in dark respiration observed in seedlings of the C₃ plant *T. grandis* represents a trifling increase in net carbon gain. However, bearing in mind the variety of values published for the effects of increasing CO₂ concentration on respiratory dark loss (see Amthor 1997; Drake et al. 1997; Curtis and Wang 1998) there is clearly a need for further studies on whole intact plants rather than leaf segments or detached leaves. In conclusion, we have demonstrated that short-term oscillations in CO₂ concentration matter. However, it is unclear whether the responses are species-specific, whether plant CO₂ exchange acclimates to oscillating CO₂ in the long-term, whether the reduction in net carbon gain persists and, if so, whether the reduction translates into reduced growth. Moreover, in our experiments the oscillations were regular in periodicity and uniform in amplitude and shape, although this is not the case in FACE systems. Even so, our observations raise the possibility that FACE systems may underestimate the potential fertilising effects of above-ambient CO₂ concentrations on plants. Acknowledgements This research was funded by the Andrew W. Mellon Foundation and the Smithsonian Tropical Research Institute. We thank Milton Garcia for skilled technical assistance. J.A.M.H. acknowledges support from Dr. R.G. Dunn and a Queensland-Smithsonian Fellowship. ### References Amthor JS (1997) Plant respiratory responses to elevated CO₂ partial pressure. In: Allen LH, Kirkham MB, Olszyk DM, Whitman CE (eds) Advances in carbon dioxide effects research. American Society of Agronomy Special Publication (Proceedings of 1993 ASA Symposium, Cincinatti, Ohio). ASA, CSSA and SSSA, Madison, WI, pp 35–77 Amthor JS, Koch GW, Willms JR, Layzell DB (2001) Leaf O₂ uptake in the dark is independent on coincident CO₂ partial pressure. J Exp Bot 52:2235-2238 Cardon ZG, Berry JA, Woodrow IE (1994) Dependence of the extent and direction of average stomatal response in *Zea mays* L. and *Phaseolus vulgaris* L. on the frequency of fluctuations in environmental stimuli. Plant Physiol 105:1007–1013 Cardon ZG, Berry JA, Woodrow IE (1995) Fluctuating [CO₂] drives species-specific changes in water use efficiency. J Bioge- ogr 22:203-208 Curtis PS, Wang X (1998) A meta-analysis of elevated CO₂ effects on woody plant mass, form, and physiology. Oecologia 113:299–313 Drake BG, Muehe MS, Peresta G, Gonzàlez-Meler MA, Matamala R (1997) Acclimation of photosynthesis, respiration and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland to elevated CO₂ concentration. Plant Soil 187:111–118 Drake BG, Azcon-Bieto J, Berry J, Bunce J, Dijkstra P, Farrar J, Gifford RM, Gonzàlez-Meler MA, Koch G, Lambers H (1999) Does elevated atmospheric CO₂ concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ 22:649–657 - Evans LS, Hendrey GR (1992) Responses of cotton foliage to short-term fluctuations in CO₂ partial pressures. Crit Rev Plant Sci 11:203–212 - Hamilton JG, Thomas RB, DeLucia EH (2001) Direct and indirect effects of elevated CO₂ on leaf respiration in a forest ecosystem. Plant Cell Environ 24:975–982 - Hendrey GR, Long SP, McKee IF, Baker NR (1997) Can photosynthesis respond to short-term fluctuations in atmospheric carbon dioxide? Photosynth Res 51:179–184 - Hendrey GR, Ellsworth DS, Lewin KF, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO₂. Global Change Biol 5:293–309 - Holtum JAM, Winter K (1999) Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Aust J Plant Physiol 26:749–757 - Holtum JAM, Winter K (2001) Are plants growing close to the floors of tropical forests exposed to markedly elevated concentrations of carbon dioxide? Aust J Bot 49:629–636 - Jahnke S (2001) Atmospheric CO₂ concentration does not directly affect leaf respiration in bean or poplar. Plant Cell Environ 24:1139–1151 - Jahnke S, Krewitt M (2002) Atmospheric CO₂ concentration may directly affect leaf respiration measurement in tobacco, but not respiration itself. Plant Cell Environ 25:641–651 - Jordan DN, Zitzer SF, Hendrey GR, Lewin KF, Nagy J, Nowak RS, Smith SD, Coleman JS, Seemann JR (1999) Biotic, abiotic and performance aspects of the Nevada Desert free-air CO₂ enrichment (FACE) facility. Global Change Biol 5:659–668 - Koch G (1993) The use of natural situations of CO₂ enrichment in studies of vegetation responses to increasing atmospheric CO₂. In: Schulze ED, Mooney HA (eds) Design and execution of experiments on CO₂ enrichment. Commission of the European Communities, Brussels, Belgium - McLeod AR, Long SP (1999) Free-air carbon dioxide enrichment (FACE) in global change research: a review. Adv Ecol Res 28:1-56 - Melzer E, O'Leary MH (1987) Anapleurotic CO₂ fixation by phosphoenolpyruvate carboxylase in C₃ plants. Plant Physiol 84:58–60 - Miglietta F, Raschi A, Battarini I, Resti R, Selvi F (1993) Natural CO₂ springs in Italy: a resource for examining long-term response of vegetation to rising atmospheric CO₂ concentrations. Plant Cell Environ 16:873–878 - Miglietta F, Peressotti A, Vaccari FP, Zaldei A, deAngeles P, Scarascia-Mugnozza G (2001) Free-air CO₂ enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476 - Nagy J, Lewin KF, Hendrey GR, Hassinger E, LaMorte R (1994) FACE facility CO₂ concentration control and CO₂ use in 1990 and 1991. Agric For Meteorol 70:31–48 - Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K (2001) Free-air CO₂ enrichment (FACE) using pure CO₂ injection: system description. New Phytol 150:251–260 - Pepin S, Körner C (2002) Web-FACE: a new canopy free-air CO₂ enrichment system for tall trees in mature forests. Oecologia 133:1–9 - Pinter PJ, Kimball BA, Wall GW, LaMorte RL, Hunsaker DJ, Adamsen FJ, Frumau KFA, Vugts HF, Hendrey GR, Lewin KF, Nagy J, Johnson HB, Wechsunge F, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ (2000) Free-air CO₂ enrichment (FACE): blower effects on wheat canopy microclimate and plant development. Agric For Meteorol 103:319–333 - Pons TL, Welschen RAM (2002) Overestimation of respiration rates in commercially available clamp-on leaf chambers. Complications with measurement of net photosynthesis. Plant Cell Environ 25:1367–1372 - Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO₂ atmosphere. New Phytol 139:395–436 - Tjoelker MG, Reich PB, Oleksyn J (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO₂ acclimation of dark respiration in five boreal tree species. Plant Cell Environ 22:767–778 - Tjoelker MG, Oleksyn J, Lee TD, Reich PB (2001) Direct inhibition of leaf dark respiration by elevated CO₂ is minor in 12 grassland species. New Phytol 150:419–424 - Winter K (1973) CO₂-Fixierungsreaktionen bei der Salzpflanze Mesembryanthemum crystallinum unter variierten Außenbedingungen. Planta 114:75–85 - Winter K, Garcia M, Lovelock CE, Gottsberger R, Popp M (2000) Responses of model communities of two tropical tree species to elevated atmospheric CO₂: growth on unfertilised soil. Flora 195:289–302